
DocBook xslTNG Reference
Author: Norman Walsh
Version 2.1.0
Updated: 07 Apr 2023
Copyright © 2020–2023 Norman Walsh.

Revision History
	2.1.0, 07 Apr 2023

This is the first official release of the “2.x” versions of the
stylesheets. Version 2.1.0 introduces a number of new features and
corrects major issues with localization and media object rendering,
but is not entirely backwards compatible with the 1.x versions. The
incompatibilities should mostly effect customization layers, not
formatted documents, though the HTML output will be a little different
in most cases. For a summary of the changes, see Appendix A, Changes in version 2.1.0.

 Table of Contents

 	
 Part I. Introduction

 	
 Preface

 	
 1. Overview

 	
 1.1. What do the stylesheets do?

 	
 1.2. Getting the stylesheets

 	
 2. Using the stylesheets

 	
 2.1. Using the Jar

 	
 2.2. Using the Python script

 	
 2.3. Run with Java

 	
 2.4. Run with Docker

 	
 2.5. Extension functions

 	
 2.6. “Chunked” output

 	
 2.7. Effectivity attributes and profiling

 	
 2.8. Syntax highlighting

 	
 2.9. Persistent table of contents

 	
 2.10. On-page table of contents

 	
 2.11. Print output (dead tree editions)

 	
 2.12. EPUB output

 	
 3. Customizing the stylesheets

 	
 3.1. Changing stylesheet parameters

 	
 3.2. Creating a customization layer

 	
 3.3. Managing CSS stylesheets

 	
 3.4. Managing media

 	
 3.5. Controlling numeration

 	
 3.6. Creating something completely different

 	
 4. Localization

 	
 4.1. Background

 	
 4.2. Overview

 	
 4.3. Localization files

 	
 4.4. Customizing a localization

 	
 4.5. Caveats

 	
 5. Implementation details

 	
 5.1. Customizing chunking

 	
 5.2. Lengths and units

 	
 5.3. Verbatim styles

 	
 5.4. Processing mediaobjects

 	
 5.5. Templates

 	
 5.6. Annotations

 	
 5.7. The pre- and post-processing pipeline

 	
 6. Building the stylesheets

 	
 6.1. Prerequisites

 	
 6.2. Repository structure

 	
 6.3. Build tasks

 	
 6.4. Testing tasks

 	
 6.5. Running XSpec

 	
 A. Changes in version 2.1.0

 	
 Glossary

 	
 References

 	
 Acknowledgements

 	
 Index

 	
 Index by module

 	
 Part II. Reference

 	
 I. Parameter reference

 	
 $additional-languages

 	
 $align-char-default, $align-char-pad, $align-char-width

 	
 $allow-eval

 	
 $annotate-toc

 	
 $annotation-collection

 	
 $annotation-mark

 	
 $annotation-placement

 	
 $annotation-style

 	
 $annotations-js

 	
 $auto-toc

 	
 $bibliography-collection

 	
 $bibliography-style

 	
 $books-inherit-from

 	
 $books-number-from

 	
 $callout-default-column

 	
 $callout-unicode-start

 	
 $chunk

 	
 $chunk-exclude

 	
 $chunk-include

 	
 $chunk-nav

 	
 $chunk-nav-js

 	
 $chunk-output-base-uri

 	
 $chunk-renumber-footnotes

 	
 $chunk-section-depth

 	
 $classsynopsis-indent

 	
 $component-numbers

 	
 $component-numbers-inherit

 	
 $components-inherit-from

 	
 $components-number-from

 	
 $control-js

 	
 $copyright-collapse-years

 	
 $copyright-year-range-separator

 	
 $copyright-year-separator

 	
 $date-date-format, $date-dateTime-format

 	
 $dc-metadata

 	
 $debug

 	
 $default-float-style

 	
 $default-language

 	
 $default-length-magnitude, $default-length-unit

 	
 $default-theme

 	
 $division-numbers

 	
 $division-numbers-inherit

 	
 $divisions-inherit-from

 	
 $divisions-number-from

 	
 $docbook-transclusion

 	
 $dynamic-profile-error

 	
 $dynamic-profile-variables

 	
 $dynamic-profiles

 	
 $experimental-pmuj

 	
 $fallback-js

 	
 $footnote-numeration

 	
 $formal-object-title-placement

 	
 $formal-objects-inherit-from

 	
 $formal-objects-number-from

 	
 $formalgroup-nested-object-title-placement

 	
 $funcsynopsis-default-style

 	
 $funcsynopsis-table-threshold

 	
 $funcsynopsis-trailing-punctuation

 	
 $generate-html-page

 	
 $generate-index

 	
 $generate-nested-toc

 	
 $generate-toc

 	
 $generate-trivial-toc

 	
 $generated-id-root

 	
 $generated-id-sep

 	
 $generator-metadata

 	
 $gentext-language

 	
 $glossary-collection

 	
 $glossary-sort-entries

 	
 $html-extension

 	
 $image-ignore-scaling

 	
 $image-nominal-height

 	
 $image-nominal-width

 	
 $image-property-warning

 	
 $index-on-role, $index-on-type

 	
 $index-show-entries

 	
 $indexed-section-groups

 	
 $lists-of-equations

 	
 $lists-of-examples

 	
 $lists-of-figures

 	
 $lists-of-procedures

 	
 $lists-of-tables

 	
 $local-conventions

 	
 $mathml-js

 	
 $mediaobject-accessibility

 	
 $mediaobject-details-placement

 	
 $mediaobject-exclude-extensions

 	
 $mediaobject-grouped-by-type

 	
 $mediaobject-input-base-uri

 	
 $mediaobject-output-base-uri

 	
 $mediaobject-output-paths

 	
 $mediaobject-video-element

 	
 $message-level

 	
 $nominal-page-width

 	
 $number-single-appendix

 	
 $olink-databases

 	
 $orderedlist-item-numeration

 	
 $othername-in-middle

 	
 $output-media

 	
 $oxy-markup

 	
 $page-style

 	
 $pagetoc-dynamic

 	
 $pagetoc-elements

 	
 $pagetoc-js

 	
 $paper-size

 	
 $persistent-toc

 	
 $persistent-toc-css

 	
 $persistent-toc-filename

 	
 $persistent-toc-js

 	
 $persistent-toc-search

 	
 $personal-name-style

 	
 $pixels-per-inch

 	
 $procedure-step-numeration

 	
 $productionset-lhs-rhs-separator

 	
 $profile-arch

 	
 $profile-audience

 	
 $profile-condition

 	
 $profile-conformance

 	
 $profile-lang

 	
 $profile-os

 	
 $profile-outputformat

 	
 $profile-revision

 	
 $profile-revisionflag

 	
 $profile-role

 	
 $profile-security

 	
 $profile-separator

 	
 $profile-userlevel

 	
 $profile-vendor

 	
 $profile-wordsize

 	
 $qandadiv-default-toc

 	
 $qandaset-default-label

 	
 $qandaset-default-toc

 	
 $refentry-generate-name

 	
 $refentry-generate-title

 	
 $relax-ng-grammar

 	
 $resource-base-uri

 	
 $revhistory-style

 	
 $section-numbers

 	
 $section-numbers-inherit

 	
 $section-toc-depth

 	
 $sections-inherit-from

 	
 $sections-number-from

 	
 $segmentedlist-style

 	
 $sets-inherit-from

 	
 $sets-number-from

 	
 $show-remarks

 	
 $sidebar-as-aside

 	
 $sort-collation

 	
 $table-accessibility

 	
 $table-footnote-numeration

 	
 $theme-picker

 	
 $transclusion-id-fixup

 	
 $transclusion-link-scope

 	
 $transclusion-prefix-separator

 	
 $transclusion-suffix

 	
 $transform-after

 	
 $transform-before

 	
 $transform-original

 	
 $unwrap-paragraphs

 	
 $use-docbook-css

 	
 $use-minified-css

 	
 $user-css-links

 	
 $variablelist-termlength-threshold

 	
 $verbatim-callouts

 	
 $verbatim-line-style

 	
 $verbatim-number-every-nth

 	
 $verbatim-number-first-line

 	
 $verbatim-number-minlines

 	
 $verbatim-number-separator

 	
 $verbatim-numbered-elements

 	
 $verbatim-plain-style

 	
 $verbatim-space

 	
 $verbatim-style-default

 	
 $verbatim-syntax-highlight-css

 	
 $verbatim-syntax-highlight-languages

 	
 $verbatim-syntax-highlighter

 	
 $verbatim-table-style

 	
 $verbatim-trim-trailing-blank-lines

 	
 $warn-about-missing-localizations

 	
 $xlink-arclist-after

 	
 $xlink-arclist-before

 	
 $xlink-arclist-sep

 	
 $xlink-arclist-titlesep

 	
 $xlink-icon-closed

 	
 $xlink-icon-open

 	
 $xlink-js

 	
 $xlink-style

 	
 $xlink-style-default

 	
 $xspec

 	
 II. Variables reference

 	
 $arg-choice-def-close-str, …

 	
 $err:DYNAMIC-PROFILE-EVAL-ERROR

 	
 $err:DYNAMIC-PROFILE-SYNTAX-ERROR

 	
 $err:INTERNAL-HIGHLIGHT-ERROR

 	
 $err:INTERNAL-RENUMBER-ERROR

 	
 $err:INVALID-AREAREFS

 	
 $err:INVALID-CALS

 	
 $err:INVALID-CONSTRAINT

 	
 $err:INVALID-DYNAMIC-PROFILE-ERROR

 	
 $err:INVALID-INJECT

 	
 $err:INVALID-NAME-STYLE

 	
 $err:INVALID-PRODUCTIONRECAP

 	
 $err:INVALID-RESULTS-REQUESTED

 	
 $err:INVALID-TEMPLATE

 	
 $err:INVALID-TRANSFORM

 	
 $v:personal-name-styles

 	
 $v:VERSION

 	
 $v:VERSION-ID

 	
 $v:admonition-icons

 	
 $v:annotation-close

 	
 $v:as-json

 	
 $v:as-xml

 	
 $v:bridgehead-map

 	
 $v:chunk

 	
 $v:chunk-filter-namespaces

 	
 $v:chunk-renumber-footnotes

 	
 $v:custom-localizations

 	
 $v:debug

 	
 $v:formal-object-title-placement

 	
 $v:formalgroup-nested-object-title-placement

 	
 $v:highlight-js-head-elements

 	
 $v:image-nominal-height

 	
 $v:image-nominal-width

 	
 $v:invisible-characters

 	
 $v:localization-base-uri

 	
 $v:media-type-default

 	
 $v:media-type-map

 	
 $v:mediaobject-details-placement

 	
 $v:mediaobject-exclude-extensions

 	
 $v:mediaobject-input-base-uri

 	
 $v:mediaobject-output-base-uri

 	
 $v:nominal-page-width

 	
 $v:olink-databases

 	
 $v:prism-js-head-elements

 	
 $v:standard-transforms

 	
 $v:templates

 	
 $v:theme-list

 	
 $v:title-groups

 	
 $v:title-properties

 	
 $v:titlepage-default

 	
 $v:toc-close

 	
 $v:toc-open

 	
 $v:unit-scale

 	
 $v:user-title-groups

 	
 $v:user-title-properties

 	
 $v:user-xref-groups

 	
 $v:user-xref-properties

 	
 $v:verbatim-callouts

 	
 $v:verbatim-line-style

 	
 $v:verbatim-number-every-nth

 	
 $v:verbatim-number-first-line

 	
 $v:verbatim-number-minlines

 	
 $v:verbatim-numbered-elements

 	
 $v:verbatim-plain-style

 	
 $v:verbatim-properties

 	
 $v:verbatim-space

 	
 $v:verbatim-syntax-highlight-languages

 	
 $v:verbatim-syntax-highlight-options

 	
 $v:verbatim-syntax-highlight-pygments-options

 	
 $v:verbatim-table-style

 	
 $v:xref-groups

 	
 $v:xref-properties

 	
 III. Function reference

 	
 ext:cwd

 	
 ext:image-metadata

 	
 ext:image-properties

 	
 ext:pygmentize

 	
 ext:pygmentize-available

 	
 ext:validate-with-relax-ng

 	
 ext:xinclude

 	
 f:absolute-length

 	
 f:attributes

 	
 f:cals-colsep

 	
 f:cals-rowsep

 	
 f:check-gentext

 	
 f:chunk

 	
 f:chunk-filename

 	
 f:chunk-title

 	
 f:css-length

 	
 f:css-property

 	
 f:date-format

 	
 f:empty-length

 	
 f:equal-lengths

 	
 f:generate-id

 	
 f:gentext

 	
 f:gentext-letters

 	
 f:gentext-letters-for-language

 	
 f:highlight-verbatim

 	
 f:href

 	
 f:id

 	
 f:in-scope-language

 	
 f:intra-number-separator

 	
 f:is-empty-length

 	
 f:is-true

 	
 f:l10n-language

 	
 f:l10n-token

 	
 f:label-separator

 	
 f:language

 	
 f:languages

 	
 f:length-string

 	
 f:length-units

 	
 f:locales

 	
 f:make-length

 	
 f:mediaobject-amend-uri

 	
 f:mediaobject-input-base-uri

 	
 f:mediaobject-type

 	
 f:mediaobject-viewport

 	
 f:number-separator

 	
 f:object-align

 	
 f:object-contentheight

 	
 f:object-contentwidth

 	
 f:object-height

 	
 f:object-properties

 	
 f:object-scale

 	
 f:object-scalefit

 	
 f:object-valign

 	
 f:object-width

 	
 f:orderedlist-item-number

 	
 f:orderedlist-item-numeration

 	
 f:orderedlist-startingnumber

 	
 f:parse-length

 	
 f:pi

 	
 f:pi-attributes

 	
 f:post-label-punctuation

 	
 f:refsection

 	
 f:relative-length

 	
 f:relative-path

 	
 f:section

 	
 f:section-depth

 	
 f:spaces

 	
 f:step-number

 	
 f:step-numeration

 	
 f:syntax-highlight

 	
 f:target

 	
 f:template

 	
 f:tokenize-on-char

 	
 f:unique-id

 	
 f:uri-scheme

 	
 f:verbatim-highlight

 	
 f:verbatim-numbered

 	
 f:verbatim-style

 	
 f:verbatim-trim-trailing

 	
 f:xlink-style

 	
 f:xpointer-idref

 	
 IV. Template reference

 	
 t:audio-fallback

 	
 t:biblioentry

 	
 t:bottom-nav

 	
 t:chunk-cleanup

 	
 t:chunk-footnotes

 	
 t:chunk-output

 	
 t:docbook

 	
 t:generate-index

 	
 t:index-zone-reference

 	
 t:inline

 	
 t:mediaobject-img

 	
 t:person-name

 	
 t:person-name-family-given

 	
 t:person-name-first-last

 	
 t:person-name-last-first

 	
 t:person-name-list

 	
 t:table-footnotes

 	
 t:top-nav

 	
 t:video-fallback

 	
 t:xlink

 	
 V. Mode reference

 	
 m:annotation-content

 	
 m:ansi

 	
 m:ansi-table

 	
 m:attributes

 	
 m:biblio690

 	
 m:biblioentry

 	
 m:bibliomixed

 	
 m:callout-bug

 	
 m:callout-link

 	
 m:chunk-cleanup

 	
 m:chunk-filename

 	
 m:chunk-output

 	
 m:chunk-title

 	
 m:chunk-write

 	
 m:copyright-years

 	
 m:crossref

 	
 m:crossref-inherit-separator

 	
 m:crossref-label

 	
 m:crossref-label-separator

 	
 m:crossref-number

 	
 m:crossref-number-separator

 	
 m:crossref-prefix

 	
 m:crossref-suffix

 	
 m:crossref-title

 	
 m:details

 	
 m:details-attribute

 	
 m:docbook

 	
 m:footnote-number

 	
 m:footnotes

 	
 m:generate-titlepage

 	
 m:gentext

 	
 m:gentext-list

 	
 m:headline

 	
 m:headline-label

 	
 m:headline-label-separator

 	
 m:headline-number

 	
 m:headline-number-separator

 	
 m:headline-prefix

 	
 m:headline-suffix

 	
 m:headline-title

 	
 m:highlight-options

 	
 m:html-body-script

 	
 m:html-head

 	
 m:html-head-last

 	
 m:html-head-links

 	
 m:html-head-script

 	
 m:htmltable

 	
 m:imagemap

 	
 m:index-div

 	
 m:index-primary

 	
 m:index-secondary

 	
 m:index-see

 	
 m:index-seealso

 	
 m:index-tertiary

 	
 m:kr

 	
 m:kr-args

 	
 m:kr-table

 	
 m:kr-table-args

 	
 m:link

 	
 m:list-of-equations

 	
 m:list-of-examples

 	
 m:list-of-figures

 	
 m:list-of-procedures

 	
 m:list-of-tables

 	
 m:list-of-titles

 	
 m:mediaobject-end

 	
 m:mediaobject-info

 	
 m:mediaobject-output-adjust

 	
 m:mediaobject-start

 	
 m:mediaobject-uris

 	
 m:persistent-toc

 	
 m:production-number

 	
 m:pygments-options

 	
 m:revhistory-list

 	
 m:revhistory-table

 	
 m:seglist-table

 	
 m:segtitle-in-seg

 	
 m:synopfragment-bug

 	
 m:synopsis

 	
 m:title

 	
 m:titlepage

 	
 m:to-uppercase

 	
 m:toc

 	
 m:toc-entry

 	
 m:toc-nested

 	
 VI. Processing instruction reference

 	
 DocBook-xslTNG-version

 	
 current-dateTime

 	
 db

 	
 system-property

 	
 B. GNU Free Documentation License

 Part I. Introduction
Table of Contents
	Preface
	1. Overview	1.1. What do the stylesheets do?
	1.2. Getting the stylesheets

	2. Using the stylesheets	2.1. Using the Jar
	2.2. Using the Python script
	2.3. Run with Java
	2.4. Run with Docker
	2.5. Extension functions
	2.6. “Chunked” output
	2.7. Effectivity attributes and profiling
	2.8. Syntax highlighting
	2.9. Persistent table of contents
	2.10. On-page table of contents
	2.11. Print output (dead tree editions)
	2.12. EPUB output

	3. Customizing the stylesheets	3.1. Changing stylesheet parameters
	3.2. Creating a customization layer
	3.3. Managing CSS stylesheets
	3.4. Managing media
	3.5. Controlling numeration
	3.6. Creating something completely different

	4. Localization	4.1. Background
	4.2. Overview
	4.3. Localization files
	4.4. Customizing a localization
	4.5. Caveats

	5. Implementation details	5.1. Customizing chunking
	5.2. Lengths and units
	5.3. Verbatim styles
	5.4. Processing mediaobjects
	5.5. Templates
	5.6. Annotations
	5.7. The pre- and post-processing pipeline

	6. Building the stylesheets	6.1. Prerequisites
	6.2. Repository structure
	6.3. Build tasks
	6.4. Testing tasks
	6.5. Running XSpec

	A. Changes in version 2.1.0
	Glossary
	References
	Acknowledgements
	Index
	Index by module

Preface
These stylesheets are the third
iteration of stylesheets for DocBook that I’ve written. I started working on the
XSLT 1.0
Stylesheets for DocBook in the 90’s, before XSLT 1.0 was
even a W3C Recommendation. I started working on the
XSLT 2.0
Stylesheets for DocBook just around the time when XSLT 2.0 became
a W3C Recommendation. I wrote most of
DocBook xslTNG just a month or so before the third anniversary
of the XSLT 3.0 Recommendation.
Why did it take so long?
To answer that question, we need to reflect for a moment on XSLT and
 its place in the XML ecosystem. When XSLT arrived on the scene, we
 were near the peak of XML enthusiasm. Not only was XML supported
 everywhere, it was possible to imagine XSLT everywhere as well.
 Certainly, the presence of XSLT in the browser felt significant at
 the time.

The ubiquity of XML and the fact that XSLT was “just an XML
 vocabulary” may have contributed to another significant phenomenon:
 lots of users who did not self identify as programmers were learning
 to use XSLT and doing significant things with it.

There were other tools available for transforming markup at the
 time, and arguably some of them were better than XSLT, but they were
 programming languages and you had to be a programmer to use them.
 They were also mostly commercial applications not widely available
 to casual users.

XSLT was free, it was everywhere, and it was used by everyone, not
 “just” programmers. It was the clear winner than and remains the
 clear winner today in terms of markup transformation.

You could do a lot of things with XSLT 1.0. You could do a lot more
 things than you might at first even have thought possible. (In fact,
 you could do all things, but the
 Turing complete nature of XSLT isn’t relevant here.) Some very
 common tasks, like grouping, were possible but difficult. Lots of
 very useful things were either not possible or required extensions:
 regular expressions, functions, date and time formatting, creating
 special characters in the output, to name just a few.

XSLT 2.0 solved all of these problems (and more). Significantly, I
 think, all of these new features appealed directly to almost all
 users of XSLT 1.0. Everyone had encountered a grouping problem
 (building an index, for example). Everyone had wanted regular
 expression matching or date formatting. Lots of users wanted to
 write more sophisticated predicates (and many were willing to learn
 how to use functions to achieve that result).

XSLT 3.0 arguably introduces larger and
 more dramatic features than XSLT 2.0 did. There are a bunch of new
 features designed to enable streaming processing; there are
 significant software engineering improvements: packaging, exception
 handling, and assertions; there are common programming language
 constructs like maps and arrays. There is also a selection of
 features inherited from updates to XPath (new functions, a subset of
 let syntax, and support for higher order
 functions, for example).

What’s curious, I think, is that many of these features are probably
 less immediately appealing to many (most?) current users. XSLT 2.0
 doesn’t feel constraining in the same way that XSLT 1.0 did, and the
 features in XSLT 3.0 don’t immediately and obviously solve problems
 that most users have.

Streaming, for example, is incredibly powerful and it’s an important
 and significant milestone in markup processing. It makes it possible
 to solve whole classes of problems that were previously impossible
 to solve or required enormously expensive hardware. But my laptop
 will quite easily process a book full of complex markup that runs to
 hundreds of pages. I don’t have any problems that require a
 streaming processor.

Likewise, packaging is useful and important. The DocBook
 xslTNG stylesheets should absolutely be a package. But
 that’s not true of a lot of stylesheets. There might be software
 engineering benefit in making a package even for stylesheets that
 you don’t intend to distribute, but that’s more likely to appeal to
 people who think of what they’re doing is programming.

Nevertheless, there are lots of good reasons to use XSLT 3.0 even if
 you are “only” transforming documents and even if you don’t think of
 writing transformations as programming.

Chapter 1. Overview
Before we get started, let’s look at what the stylesheets do and
where you can get them!
1.1. What do the stylesheets do?
The DocBook xslTNG stylesheets transform
DocBook V5.x into HTML. The intent is that they support all of DocBook
V5.2, including the DocBook Publishers elements. (The
test suite report
gives a precise summary of the current state of coverage.) They will also
process DocBook V4.x documents by first converting them (tranforming
source elements that have changed, adding the namespace, etc.) into
5.x documents.
Some parts of DocBook, especially the modeling parts, are very
open-ended. One could, in principle, write a function synopsis for any
programming language. The stylesheets are naturally going to support
only a subset of languages out of the box. Every attempt has been made
to make customizations easy where it’s anticipated that they may be
necessary.
The stylesheets can also be used to produced paged media such as
PDF files. This works by having a slightly different HTML
transformation initially, and then by further transforming the HTML so
that it can be formatted with an appropriate CSS formatter to produced
paged output. This is similar, but not the same as producing XSL
Formatting Objects and then transforming those.
Producing other output formats, EPUB files, for example, is
planned for the future but no specific schedule is promised. There are no
plans at the moment to produce XSL FO stylesheets.
1.2. Getting the stylesheets
There are three ways to get the stylesheets: you can
download the latest release from
GitHub, you can get them from Maven,
or you can clone
the repository
and build them yourself. We’ll cover
the first two options in this chapter; Chapter 6, Building the stylesheets covers
the last option in detail.
1.2.1. Download the latest release
The latest release is always available from the
GitHub
releases page. At the time of publication, the latest release was
version 2.1.0.
Distributed this way, you’ll get a ZIP file that contains the stylesheets
plus a number of ancillary files and tools. These are mostly covered in
the next chapter Chapter 2, Using the stylesheets.
You can unzip the file anywhere that’s convenient: in your home
directory or in a system-wide location.
1.2.2. Getting the release from Maven
The latest release is always available
from
Maven*.

The group, artifact, and version ID for the latest release at
the time of publication is:
org.docbook:docbook-xslTNG:2.1.0
If you’re comfortable using Maven, I’m going to assume that’s all you
need to know.
The Maven distribution differs from the zip file in a couple of ways:
	It doesn’t bundle any of the dependencies. The
ZIP file is more akin
to
an
“uber” or “fat” jar; it includes (some of) the core dependencies so
that it works out-of-the-box. Maven is designed to resolve dependencies,
so that shouldn’t be necessary here.

	The Maven jar doesn’t include the Python script or the extra resources
(CSS and JavaScript files) because it doesn’t seem like it would be convenient
to extract them from the Maven jar (which will probably be installed deep in
some repository hierarchy well out of sight). Consequently, you may want to
download the distribution periodically as well.

*
With the caveat that it sometimes takes a few
hours for the releases to make their way from the registry onto the website.
If you’re chasing the very latest release and it’s just been published, it
may be available before it appears on the website.

Chapter 2. Using the stylesheets
In principle, the stylesheets will run with any conformant XSLT
3.0 processor. For many users, that means
Saxon. Although earlier versions
may work, Saxon 10.1 or later is recommended.
In principle, the instructions for using the stylesheets are
straightforward: using your XSLT 3.0 processor of choice, transform your
DocBook source documents with the docbook.xsl
stylesheet in the xslt
directory of the distribution.
In practice, for most users, running the stylesheets will
require getting a Java environment configured appropriately. For many,
one of the most significant challenges is getting all of the
dependencies sorted out. Modern software development, for better or
worse, often consists of one library relying on another which relies
on another, etc.
The DocBook xslTNG stylesheets attempt to
simplify this process, especially for the “out of the box” experience
by providing two convenience methods for running the stylesheets: a
jar file with a Main class, and a Python script
that attempts, among other things, to make sure all of the
dependencies are available.
If you’re an experience Java user, you may prefer to simply run
the stylesheets
directly with Java.
Irrespective of which method you choose, running the stylesheets
is simply a matter of processing your input document
myfile.xml with
xslt/docbook.xsl. For example:

 |$ saxon myfile.xml -xsl:xslt/docbook.xsl -o:myfile.html

The exact path to docbook.xsl will vary, of course,
but it’s in the xslt directory of the
distribution.
ⓘ
Note
The resulting HTML document contains references to CSS stylesheets
and possibly JavaScript libraries. The output won’t look as nice in your browser
if those resources aren’t available. They’re in the resources directory of the distribution. A quick and easy way to see the
results is simply to send the output to the samples
directory from the distribution. The resources have already been copied into
that directory. In the longer run, you’ll want to make sure that they get
copied into the output directory for each of your projects.
Alternatively, you can copy them to a web location of your choosing and
point to them there. You can even point to them in
the
DocBook CDN, but beware that those are not immutable. The “current”
version will change with every release and versioned releases will not persist
indefinitely.
Change the $resource-base-uri to adjust the paths
used in the output document.

Many aspects of the transformation can be controlled simply by
setting parameters (see I. Parameter reference). It’s also possible
to change the transformation by writing your own customization layer
(see Chapter 3, Customizing the stylesheets).
2.1. Using the Jar
The ZIP distribution includes a
JAR file that you can run directly. That
JAR file is
$ROOT/libs/docbook-xslTNG-version.jar
where “$ROOT” is whatever directory you chose
to unzip the distribution into and version is the
stylesheet version.
Assuming you unzipped the version 2.1.0 distribution into
/home/ndw/xsltng, you can run
the JAR like this:
java -jar /home/ndw/xsltng/libs/docbook-xslTNG-2.1.0.jar
Let’s try it out. Open a shell window and change to the samples directory,
/home/ndw/xsltng/samples assuming you unzipped
it as described above. Now run the java command:
 |$ java -jar ../libs/docbook-xslTNG-2.1.0.jar article.xml
 |<!DOCTYPE html><html xmlns="http://www.w3.org/1999/xhtml">
 |…more HTML here...
 |<nav class="bottom"></nav></body></html>

That big splash of HTML was your first DocBook document
formatted by the stylesheets! Slightly more usefully, you can save
that HTML in a file:

 |$ java -jar ../libs/docbook-xslTNG-2.1.0.jar article.xml \
 | -o:article.html

If you now open article.html in your
favorite web browser, you’ll see the transformed sample document
which should look like Figure 2.1, “The sample document: article.xml”.

[image: A rendering of the sample document]

Figure 2.1. The sample document: article.xml

The JAR file, run this way, accepts the same
command line options as Saxon, with a few caveats:
	No -x, -y, or -r options
	The executable in the JAR file automatically configures Saxon to
use a catalog-based resolver and points the resolver at a catalog that
includes the files in the distribution.

	No -init option
	The DocBook xslTNG
extension functions will be registered
automatically.

	Multiple -catalog options
	You can repeat the -catalog option. All of the catalogs
you specify will be searched before the default catalog.

	Default stylesheet
	If you do not specify a stylesheet with the -xsl option,
the xslt/docbook.xsl stylesheet will be used automatically.

2.2. Using the Python script
The ZIP distribution includes a
Python script in the bin directory.
This helper script is a convenience wrapper around Saxon. It sets up
the Java classpath and automatically configures a catalog resolver and
the DocBook extension functions.
☝
Important
The script requires the click and
pygments packages,
which you must install with pip before
running the script. For example:
 |python3 -m pip install pygments=2.6.1 click

This script behaves much like the JAR file described in
Section 2.1, “Using the Jar”. In particular,
it accepts the same
command line options as Saxon, with
the same caveats.
The significant feature of the Python script is that it will
attempt to sort out the dependencies for you. It assumes that you’ve
used Maven to install the package and its dependencies, so you’ll
have to have installed
Maven. How you do that varies by platform, but your package
manager probably has it.
The following command will assure that you’ve downloaded all of
the necessary dependencies. You only have to do this once.
 |$ mvn org.apache.maven.plugins:maven-dependency-plugin:2.4:get \
 | -Dartifact=org.docbook:docbook-xslTNG:2.1.0

That might take a while.
The script will work through the dependencies that you have
installed, and the things that they depend on, and construct a Java
class path that includes them all.
The script stores its configuration in
.docbook-xsltng.json in your home directory.
Options passed to the script are processed as follows: the
initial options, all introduced by two hyphens, are interpreted by
this script; all the remaining options are passed directly to
Saxon.
The script options are:
	--help
	Prints a usage message.

	--config:filename
	Use filename as the configuration
file. The default configuration file is
.docbook-xsltng.json in your home directory.

	--resources:dir
	This option will copy the resources directory (the CSS and JavaScript files)
from the distribution into the directory where your output files are going,
dir. If
dir is not specified, the script attempts to
work out the directory from the -o option provided to Saxon.
If no directory is specified and it can’t work out what the directory is, it does nothing.

	--java:javaexec
	Use javaexec as the Java executable.
The default java executable is the first one on your PATH.

	--home:dir
	Use dir as the DocBook
xslTNG home directory. This should be the location where
you unzipped the distribution. (You probably shouldn’t change this.)

	--verbose
	Enables verbose mode; it prints more
messages about what it finds.

	--debug
	Enables debug mode. Instead of running the
transformation, it will print out the command that would have been run.

	--
	Immediately stop interpreting options. Everything that follows this option
will be passed to Saxon, even if it begins with two hyphens.

2.3. Run with Java
Assuming you’ve organized your class path so that all of the
dependencies are available (you may find that using a tool like Gradle
or Maven simplifies this process), simply run the Saxon class.
For Saxon HE, the class is net.sf.saxon.Transform.
For Saxon PE and EE, the class is com.saxonica.Transform.
2.4. Run with Docker
This is experimental.
The docker directory
contains an experimental Dockerfile. Using docker allows you to
isolate the environment necessary to run the DocBook xslTNG
Stylesheets from your local environment.
Using Docker is a three step process. Step 0, you have to have
installed Docker!
	Build the docker image. In the docker directory, run the docker build
command:
 |$ docker build -t docbook-xsltng .

The “-t” option provides a tag for the image;
you can make this anything you want. There’s a VERSION
build argument if you want to build a particular release. For example,
 |$ docker build --build-arg VERSION=0.9.14 -t docbook-xsltng .

will build a Docker image for the 0.9.14 release of the
stylesheets irrespective of the version in the Dockerfile.

	Run the image, for example:
 |$ docker run docbook-xsltng samples/article.xml

If you chose a different tag when you built the image, use that
tag in place of docbook-xsltng in the run
command. Everything after the container tag becomes options to the
docbook Python script.

ⓘ
Note
The context the script runs in is inside
the container. It can’t for example, see your local filesystem. The
example above works because the distribution is unpacked inside the
container. So the article.xml document isn’t the
one on your local filesystem.

You can use the Docker facilities for mounting directories to
change what documents the script can access. For example:

 |$ docker run -v /tmp:/output -v /path/to/samples:/input \
 | docbook-xsltng /input/article.xml chunk=index.html \
 | chunk-output-base-uri=/output/

Assuming that the “samples” directory in the distribution is
located at /path/to/samples, this will chunk the
article.xml sample document that the script sees
in /input
(which is where you mounted samples) and it will write the
output to /output (which is where you mounted
/tmp).
When the script finishes, the chunked output will be in
/tmp.
☞
Tip
If you choose to use Docker, you don’t have to rebuild the container
everytime a new stylesheet release occurs. You can simply mount the new
xslt directory into the container
like any other directory.

2.5. Extension functions
The stylesheets are distributed with several extension functions:
	ext:cwd()
	Returns the “current working directory” where the processor is running.

	ext:image-properties()
	Returns basic properties of an image, width and height.

	ext:image-metadata()
	Returns much more comprehensive image properties and understands
far more image types than ext:image-properties().
Requires the metadata-extractor libraries.

	ext:pygmentize()
	Runs the external Pygments processor on
a verbatim listing to add syntax highlighting.

	ext:pygmentize-available()
	Returns true if the external Pygments processor
is available on the current system.

	ext:xinclude()
	Performs XInclude processing. This extension supports
the basic XPointer schemes, RFC 5147 fragment identifiers,
and search, a scheme that supports searching in text
documents.

	ext:validate-with-relax-ng()
	Performs RELAX NG validation.

At the time of this writing, all of these extension functions require
Saxon 10.1 or later.
Make sure that the docbook-xsltng-version.jar
file is on your class path and use the Saxon -init option to
load them:
-init:org.docbook.xsltng.extensions.Register

2.5.1. Extension function debugging
When an extension function fails, or produces result other than
what you expect, it can be difficult sometimes to work out what
happened. You can enable debugging messages by setting the the system
property org.docbook.xsltng.verbose.
Setting the property to the value “true” enables
all of the debugging messages. For a more selective approach, set it
to a comma separated list of keyword values.
The following keywords are recognized:
	registration
	Enables messages related to function registration.

	image-properties
	Enables messages related to image properties.

	image-errors
	Enables messages related to image properties, but only when the
function was unable to find the properties or encountered some sort of error
condition.

	pygmentize-show-command
	Enables a message that will show the pygmentize command as it was run.

	pygmentize-show-results
	Enables a message that will show the output of the pygmentize command,
before it is processed by the function.

	pygmentize-errors
	Enables messages related to errors encountered attempting to highlight
listings with pygmentize.

2.6. “Chunked” output
Transforming myfile.xml with
docbook.xsl usually produces a single HTML
document. For large documents, books like this one for example, it’s
sometimes desirable to break the input document into a collection of
web pages. You can achieve this with the
DocBook xslTNG Stylesheets by setting
two parameters:

	$chunk
	This parameter should be set to the name that you want to use for the
first, or top, page of the result. The name
index.html is a common choice.

	$chunk-output-base-uri
	This parameter should be set to the absolute path where you want
to use as the base URI for the result documents, for example
/home/ndw/output/guide/.
ⓘ
Note
The trailing slash is important, this is a URI. If you specify
only /home/ndw/output/guide, the
base URI will be taken to be /home/ndw/output/,
and the documents won’t have the URIs you expect.

This output URI has nothing to do with where your documents are
ultimately published and the documents themselves won’t contain any references
to it. It simply establishes the root of output. If you’re running your
XSLT processor from the command line, it’s likely that the documents will
be written to that location. If you’re running an XProc pipeline, it simply
controls the URIs that appear on the secondary result port.

Many aspects of chunking can be easily customized. A few of the most
relevant parameters and templates are:

	$chunk-include and
$chunk-exclude
	Taken together, these two parameters determine what elements in your
source document will be considered “chunks” in the output.

	$persistent-toc
	If this parameter is true, then a JavaScript
“fly-out” table of contents will be available on every page.

	$chunk-nav
	This parameter, discussed more thoroughly in
Section 2.6.1, “Keyboard navigation and speaker notes” enables keyboard navigation between
chunks.

	t:top-nav and
t:bottom-nav
	These templates control how the top-of-page and bottom-of-page
navigation aids are constructed.

2.6.1. Keyboard navigation and speaker notes
If the $chunk-nav parameter is
true, a reference to an additional JavaScript library will
be included in the resulting pages. This library supports keyboard
navigation between the pages. The navigation keys are described in the
parameter reference page.

There is an additional customization layer
(xslt/speaker-notes.xsl) provided for adding
speaker notes to the pages. This is provided both as an example of a
customization layer and because the author finds it convenient.
If you use the speaker notes customization layer, the any top-level
element in a chunk with the role “speaker-notes” will
be suppressed from the default presentation. If you press “S”
on the page, then you’ll get a “speaker notes” view of the page.
This can be combined with another extension, the use of browser
local storage, to create a simple presentation system. Add this
meta tag to the
info element of your document:
 |<meta xmlns="http://www.w3.org/1999/xhtml"
 | name="localStorage.key" content="keyname"/>

That will cause the pages to keep track of their location using the
“keyname” property in local storage. This is important
because it enables the following trick:
	Configure keyboard navigation, speaker notes, and local storage
in your document.

	Arrange for your document to be served up from a web server.
You can do this by running one locally or by putting the documents on a web
server somewhere else.

	Open up the main page of your document in a browser.

	Open up a second browser window pointing
to the same page. Navigate back and forth between the pages. You should see
that the two windows stay in sync.

	Now press “S” in one of the windows and
navigate around. You should see that the two windows stay in sync and that your
speaker notes are consistently presented in one of the windows.

I often use this trick when I’m giving presentations. I can project the
slides in one browser window and keep the other browser window on my laptop.
This allows me to see my notes while easily projecting the “real” content.
2.7. Effectivity attributes and profiling
When documenting computer hardware and software systems, it’s
very common to have different documentation sets that overlap
signficantly. Documentation for two different models of network
router, for example, might differ only in a few specific details. Or a
user guide aimed at experts might have a lot in common with the new user
guide.
2.7.1. Effectivity
There are many ways to address this problem, but one of the
simplest is to identify the “effectivity” of different parts of a
document. Effectivity in this context means identifying the parts
of a document that are effective for different audiences.
When a document is formatted, the stylesheets can selectively
include or omit elements based on their configured effectivity. This
“profiled” version of the document is the one that’s explicitly
targeted to the audience specified.
DocBook supports a wide variety of common attributes for this
purpose:
Table 2.1. Common DocBook effectivity attributes
	Attribute	Nominal effectivity axis
	arch	The architecture, Intel or AMD
	audience	The audience, operations or development
	condition	Any condition (semantically neutral)
	conformance	The conformance level
	os	The operating system, Windows or Linux
	outputformat	The output format, print or online
	revision	The revision, 3.4 or 4.0.
	security	The security, secret or top-secret
	userlevel	The user level, novice or expert
	vendor	The vendor, Acme or Yoyodyne
	wordsize	The word size, 32 or 64 bit

In addition, the stylesheets support profiling on several common attributes
that are not explicitly for effectivity: xml:lang, revisionflag,
and role.
ⓘ
Note
DocBook places no constraints on the values used for effectivity
and the stylesheets don’t either. You’re free to use “cat” and “dog”
as effectivity values in the wordsize attribute, if you
wish. The further you deviate from the nominal meaning, the more
important it is to document your system!

Consider Example 2.1, “A contrived effectivity example”.
<para>This is an utterly contrived example of
some common text. Options are introduced with the
<phrase os="windows">/</phrase>
<phrase os="mac;linux">-</phrase> character.</para>

Example 2.1. A contrived effectivity example

If this document is formatted with the $profile-os
parameter set to “windows”, it will produce:
This is an utterly contrived example of
some common text. Options are introduced with the
/
 character.

If “mac” or “linux” is specified, it will produce:
This is an utterly contrived example of
some common text. Options are introduced with the

- character.

☝
Important
If the document is formatted without any profiling, all
of the versions will be included:
This is an utterly contrived example of
some common text. Options are introduced with the
/
- character.

That is unlikely to work well.

2.7.2. Profiling
The profiling parameters are applied to every document:
$profile-arch,
$profile-audience,
$profile-condition,
$profile-conformance,
$profile-lang,
$profile-os,
$profile-outputformat,
$profile-revision,
$profile-revisionflag,
$profile-role,
$profile-security,
$profile-userlevel,
$profile-vendor, and
$profile-wordsize. Each of these values is treated
as a string and broken into tokens at the
$profile-separator.
For every element in the source document:
	If it specifies a value for an effectivity attribute, the value
is split into tokens at the
$profile-separator.

	If the corresponding profile parameter is not empty, then the
element is discarded unless at least one of the tokens in the profile
parameter list is also in the effectivity list.

In practice, elements that don’t specify effectivity are always included
and profile parameters that are empty don’t exclude any elements.
2.7.3. Dynamic profiling
Dynamic profiling is a feature that allows you to profile the output
of the stylesheets according to the runtime values of stylesheet parameters.
You can, for example, produce different output depending on whether or not
chunking is enabled or JavaScript is being used for annotations.
To enable dynamic profiling, set the $dynamic-profiles
parameter to “true”.
In the interest of performance, security, and legibility,
dynamic profiles don’t support arbitrary expressions.
You can use a variable name by itself, $flag, which tests
if that variable is true, or you can use a
simple comparison, $var=value which tests if (the string value of)
$var has the value value.
(If $var is a list, it’s an existential
test.) You also can’t use boolean operators or any other fancy expressions.

If you really need to have a dynamic profile based on some
arbitrary condition, you can do it by making a customization layer
that stores that computation in a variable and then testing that
variable in your dynamic profile.
Backwards incompatibility
This is slightly backwards
incompatible in that profile values that begin with a dollar sign are
now interpreted differently. This is only true if dynamic profiling is
enabled.

An element with dynamic profiling will be published if none of
it’s profile expressions evaluate to false. This is slightly different
from the ordinary profiling semantic which publishes the element if
any of it’s values match.
2.8. Syntax highlighting
Program listings and other verbatim environments can be “syntax highlighted”,
that is, the significant tokens in the listing can be colored differently (keywords in red,
quoted strings in blue, that sort of thing).
The default syntax highlighter is Pygments, an external
Python program. This has the advantage that the highlighted listing is available to
the stylesheets. The stylesheets can then render line numbers, call outs, and other
features.
But running an external program for every verbatim environment requires
having the external program and also, if there are many verbatim
environments, may slow down the formatting process
An alternative is to use a JavaScript highlighter in the browser such as
highlight.js or Prism. This approach
has no impact on formatting and doesn’t require an external process. However, it means the
xslTNG Stylesheets have no control over the process. Most of the
verbatim options only apply when Pygments is used.
The choice of syntax highlighter is determined by the
$verbatim-syntax-highlighter parameter.
2.9. Persistent table of contents
The persistent Table of Contents (ToC) provides a full ToC for
an entire document accessible from each chunked
page.
The ToC is accessed by clicking on the “book” icon in the upper right
corner of the page as shown in Figure 2.2, “Opening the ToC”.
[image: Screen capture with an arrow pointing at the closed book icon in the upper-right corner.]

Figure 2.2. Opening the ToC

The icon and other aspects of the style can be changed by providing
$persistent-toc-css.
Once open, the ToC is displayed. A long ToC will be scrolled to
the location of the current page in the document as shown in
Figure 2.3, “The Persistent ToC”.
[image: Screen capture showing the persistent ToC window on the right.]

Figure 2.3. The Persistent ToC

The persistent ToC popup is transient by default, meaning that
it will disappear if you use it to navigate to a different page. If
you open the popup by “shift-clicking” on it, the ToC will persist
until you dismiss it. This can also be accomplished by selecting the
check box in the ToC. The presense of the search bar is controlled by
the $persistent-toc-search parameter.
2.9.1. Persistent ToC data
The data used by the persistent ToC can be stored in a separate
file or stored in each chunk. This is controlled by the
$persistent-toc-filename.
	If chunking is enabled and the
$persistent-toc-filename parameter is non-empty,
it’s used as a filename and a single copy of the ToC will be saved in
that file.
The benefit of this approach is that the HTML chunks are
smaller. If the persistent ToC is written into every chunk, the size
of each HTML chunk increases in proportion to the size of the ToC. For
a large document with lots of small pages, this can be a significant
percentage of the overall size.
There are two disadvantages:
	This will not work if the documents are accessed with
file: URIs: you must use http (and in some
environments, perhaps https) to load the documents. The
browser will (quite reasonably) not allow JavaScript to load documents
from the filesystem.

	Also, with this approach, opening the ToC requires another
document to be loaded into the browser. For a large ToC, this can
introduce visible latency, although browser caching tends to reduce
that after the document has been loaded once.

	If the
$persistent-toc-filename parameter is the empty
sequence, a copy of the ToC is stored in each chunk.
ⓘ
Note
When stored in each chunk, the Table of Contents is secreted away in a
script element so that
it will be ignored by screen readers and other user agents that don’t
support JavaScript or CSS.

The benefit of this approach is that it requires no additional
document to be loaded and will work even if the documents are loaded
with file URIs.
The disadvantage of this approach is that it increases the size of
each chunk. Whether that matters depends on the size of the ToC, the relative
size of the chunks, bandwidth and other constraints.

	If chunking is not being used, there will
only be one HTML result and the ToC will always be stored in that chunk.

2.10. On-page table of contents
Documents come in many shapes and sizes. Consequently, there are
a variety of navigation mechanisms available. For long documents, such as books,
a Table of Contents (ToC) is traditional (as are indexes). For web presentation,
long documents may be broken into chunks, for example at the chapter level.
In this case, header and footer navigation between chunks is almost always
available. For large documents a “persistent
ToC” can enable quick navigation from any chunk.
You can also enable an on-page ToC. The on-page ToC provides a
navigation mechanism for sections within a page. By default, it
appears on the right of the page if the window is wide enough to
comfortably display it next to the main body.
The current implementation requires JavaScript. In fact it is not
constructed from the DocBook markup, but instead from the HTML markup when
the page is rendered. To be precise, the ToC is constructed from HTML
section elements that
begin with a header that
contains an
h1…h6
element. It is therefore either a bug or a feature, depending on your perspective,
that a customization layer that changes how sections are marked up will change
what appears in the ToC. If you simply wish to suppress a particular section
from appearing in the ToC, add nopagetoc to its
class attribute.
Several parameters control presentation and formatting of the on-page ToC.
	$pagetoc-elements
	A list of the names of the elements (technically, the classes of
the sections) that should get an on-page ToC. It’s empty by default (meaning no
such ToC is rendered). For the standard presentation of this guide,
the list is set to preface chapter appendix refentry.
(The sneaky among you may wonder if you could simply set it to “component”
because that class is used for all those elements; “Yes. Yes, you could.”)

	$pagetoc-dynamic
	Determines whether or not the ToC is “dynamic”. Inspired by
Kevin Drum’s
table of contents progress
animation, the ToC keeps track of the reader’s location in the main
view and highlights the corresponding sections in the ToC (albeit without the
clever SVG animation of the original).
Set this parameter to false if you find the animation distracting.
(If the animation is enabled, a control is provided to let the reader turn it off,
in case they find it distracting.)

	$pagetoc-js
	This is the JavaScript that implements the on-page ToC. Changing this
parameter allows you to replace it with JavaScript of your own invention.

	CSS
	There is no pagetoc-css parameter; the CSS is integrated
into the standard CSS. You can find it in the pagetoc.scss file
in the repository if you want to change the presentation. (Don’t change that file,
simply add overriding rules later in the cascade.)

There is also a JavaScript API that you can use to control some features
of the presentation. This is done by adding a DocBook property to
the browser’s window object. The value of the DocBook property
should be a map. To control the on-page ToC, add a pagetoc property
to the DocBook map. The value of this property must also be a map.
The properties of the pagetoc map can be used to change
the display:
	decorated
	This is the markup used for the user-control on the on-page ToC when
the ToC is decorated. The default value is “☀”.

	plain
	This is the markup used for the user-control on the on-page ToC when
the ToC is plain (not decorated). The default value is “￮”.

	hidden
	This is the markup used for the user-control on the on-page ToC when
the ToC is hidden. The default value is “◄”.

	nothing_to_reveal
	This property controls how the on-page ToC is rendered if there are
no additional sections to be revealed. It can have the value
“hide”, to hide the ToC, “plain” to
make its presentation plain in this case, or “decorated” to
use the decorated style. The ToC will not appear if there are no sections.

To use the JavaScript API, make sure your assignments to the
DocBook object are performed before the
on-page ToC JavaScript is executed.
2.11. Print output (dead tree editions)
Formatters, the tools that turn markup of any sort into
aesthetically pleasing (or even passably acceptable) printed pages are
fiendishly difficult to write.
In the XML space, there have been a number of standards and
vendor-specific solutions to this problem. The current standards are
XSL FO and CSS.

At present, the DocBook xslTNG Stylesheets
are focused on CSS for print output. There’s a customization layer
that produces “paged-media-ready” HTML that can be processed with
a CSS formatter such as AntennaHouse
or Prince.
To get print output, format your documents with the
print.xsl stylesheet instead of the
docbook.xsl stylesheet. The additional cleanup provided
by print.xsl assures that footnotes, annotations, and
other elements will appear in the right place, and with reasonable
presentation, in the printed version.
The resulting HTML document can be formatted directly with a
CSS paged-media formatter.
2.12. EPUB output
The DocBook xslTNG Stylesheets will
produce output designed for EPUB(3) if you use the
epub.xsl stylesheet instead of
docbook.xsl. This is new in version 1.11.0 and
may be incomplete. The output conforms to
EPUBCheck
version 3.2.
Producing an EPUB file is a slightly complicated process. You
must produce (X)HTML that conforms to strict requirements, you must
produce a media type document containing a specific text string, you
must produce a manifest that identifies all of the content including
all the images, stylesheets, fonts, etc, and you must finally create a
ZIP archive (with some special consideration as well).
The stylesheets can only do part of this process. In some future
release where we use, for example, an XProc 3.0 pipeline, it may be
practical to do more.
When you run the EPUB stylesheet, the principle result document is the
media type document. This has two useful side effects: first, it establishes the
output base URI from which all the relative documents can be created, and second, if
you fail to process some element in the input, you’re likely to get extra text characters
in the principle result document. That will cause tools to reject the EPUB and draw your
attention to the error.
The stylesheets also produce the META-INF files and the OPS
directory containing the document parts and the manifest.
There are two parameters specific to EPUB:
	pub-id
	This is the unique identifier for your EPUB. If you don’t specify one, a random
one will be generated for you.

	manifest-extra
	This is a URI. If it’s specified, then it must be an XML document and that will
be added to the EPUB manifest. This is how you can add links to media and other resources
that the stylesheets don’t know about.

2.12.1. Adding metadata
You can add elements to the info element of the root element of your
document to add metadata to your EPUB files. Elements in the Dublin Core namespace
will be copied through. You can also add the elements
meta and link in the special namespace
http://docbook.org/ns/docbook/epub.
2.12.2. EPUB in action
The Getting
Started project has been updated to show how to create EPUB
from a book. The project has support for dealing with external media,
fonts, and constructing the final ZIP file.
Chapter 3. Customizing the stylesheets
In many circumstances, the stylesheets can be used “out of the
box” without any customization. But sometimes you may need to change
the formatting of certain elements. One common reason is to change the
formatting of title pages or navigational features. In other cases, it
may be to support local extensions to DocBook or simply to change the
markup to support a particular use case.
Three approaches are possible, with increasing degrees of
effort: changing stylesheet parameters, creating your own
customization layer, or making broader changes to the stylesheet’s
implementation.
The subject of broader implementation changes is the subject of
Chapter 5, Implementation details. In this chapter, we’ll look at the
easier options.
3.1. Changing stylesheet parameters
The DocBook xslTNG Stylesheets define a
lot of parameters. They are all described in I. Parameter reference.
If the change you want to make has already been parameterized, you may
be able to achieve your goal simply by setting a parameter at runtime.
For example, if you want to change the formatting of dates and times
in date elements, you can simply change the
date and time formatting
parameters. Similarly, if you want to change the numeration style of
ordered lists, you can simply change the ordered list item
numeration parameter.
These changes can be accomplished by simply passing the new
values to the processor, on the command line or in a configuration
file, for example. You do not have to write any XSLT to make these
changes.
Parameter values apply to the entire document processed by the
stylesheets. In some cases, you may wish to change the presentation of
just one or small number of elements. This can often be accomplished
with a db processing instruction in
the source document itself. These customizations can also be
accomplished without writing any XSLT.
If you want to make a change that isn’t supported by a
parameter, or an ad hoc exception that doesn’t have a supporting
processing instruction, you will have to write a customization layer.
(You are invited to submit an issue with your use case if you think it
would be of general interest.)

You may also find it convenient to write a customization layer
if you want to change several parameters and you find it inconvenient
to pass them all to the processor on every invocation.

3.2. Creating a customization layer
A customization layer is simply an XSLT stylesheet that you
write which extends the DocBook stylesheets. The simplest* customization
layer is:
 1 |<?xml version="1.0" encoding="utf-8"?>
 |<xsl:stylesheet
 | xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 | xmlns:db="http://docbook.org/ns/docbook"
 5 | xmlns:xs="http://www.w3.org/2001/XMLSchema"
 | xmlns="http://www.w3.org/1999/xhtml"
 | exclude-result-prefixes="db xs"
 | version="3.0">
 |
10 |<!-- This href has to point to your local copy
 | of the stylesheets. -->
 |<xsl:import href="docbook/xslt/docbook.xsl"/>
 |
 |</xsl:stylesheet>

This customization doesn’t do anything. But you can, for example, redefine
parameters if you wish:
 1 |<?xml version="1.0" encoding="utf-8"?>
 |<xsl:stylesheet
 | xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 | xmlns:db="http://docbook.org/ns/docbook"
 5 | xmlns:xs="http://www.w3.org/2001/XMLSchema"
 | xmlns="http://www.w3.org/1999/xhtml"
 | exclude-result-prefixes="db xs"
 | version="3.0">
 |
10 |<xsl:import href="docbook/xslt/docbook.xsl"/>
 |
 |<xsl:param name="orderedlist-item-numeration"
 | select="'1'"/>
 |
15 |<xsl:param name="date-dateTime-format"
 | select="'[D01] [MNn,*-3] [Y0001]
 | at [H01]:[m01]'"/>
 |
 |</xsl:stylesheet>

This will have the effect of running the DocBook stylesheets with those two
parameters set as specified.
If you want to change the HTML output for an element, you can write a template
for that element in your customization layer. Consider this DocBook document:

 1 |<?xml version="1.0" encoding="utf-8"?>
 |<article xmlns="http://docbook.org/ns/docbook"
 | version="5.1">
 |<info>
 5 |<title>Sample Document</title>
 |<date>2020-07-05</date>
 |</info>
 |
 |<para>This is a sample <productname>DocBook</productname>
10 |document.</para>
 |
 |</article>

Suppose that you decided you wanted to have the
productname element link automatically to the vendor
webpage.
☝
Important
The DocBook xslTNG Stylesheets process
all DocBook elements in the
m:docbook mode. This is different from previous XSLT stylesheets for DocBook
which simply used the default mode.
You must either specify a default mode in your customization layer
or remember to specify the mode on match templates and template applications.
If you forget the mode, you’ll get unexpected results!

One way to do that would be to redefine the template that processes the
productname element:
 1 |<?xml version="1.0" encoding="utf-8"?>
 |<xsl:stylesheet
 | xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 | xmlns:db="http://docbook.org/ns/docbook"
 5 | xmlns:m="http://docbook.org/ns/docbook/modes" ①
 | xmlns:xs="http://www.w3.org/2001/XMLSchema"
 | xmlns="http://www.w3.org/1999/xhtml"
 | exclude-result-prefixes="db m xs" ②
 | version="3.0">
10 |
 |<xsl:import href="docbook/xslt/docbook.xsl"/>
 |
 |<xsl:param name="orderedlist-item-numeration"
 | select="'1'"/>
15 |
 |<xsl:param name="date-dateTime-format"
 | select="'[D01] [MNn,*-3] [Y0001]
 | at [H01]:[m01]'"/>
 |
20 |<xsl:template match="db:productname"
 | mode="m:docbook"> ③
 | <xsl:variable name="name"
 | select="normalize-space(.)"/>
 |④
25 | <xsl:variable name="url" as="xs:string?">
 | <xsl:choose>
 | <xsl:when test="$name='DocBook'">
 | <xsl:sequence select="'https://docbook.org/'"/>
 | </xsl:when>
30 | <xsl:when test="$name='DocBook xslTNG Stylesheets'">
 | <xsl:sequence select="'https://xsltng.docbook.org/'"/>
 | </xsl:when>
 | <xsl:when test="$name='Wikipedia'">
 | <xsl:sequence select="'https://wikipedia.org/'"/>
35 | </xsl:when>
 | <xsl:otherwise>
 | <!-- Unrecognized -->
 | </xsl:otherwise>
 | </xsl:choose>
40 | </xsl:variable>
 |
 | <xsl:choose>
 | <xsl:when test="empty($url)">
 | <xsl:next-match/> ⑤
45 | </xsl:when>
 | <xsl:otherwise>
 |
 | <xsl:next-match/> ⑤
 |
50 | </xsl:otherwise>
 | </xsl:choose>
 |</xsl:template>
 |
 |</xsl:stylesheet>

	①
	All of the DocBook elements are processed in the “m:docbook” mode.

	②
	Remember to exclude all the namespaces you declare so that they don’t wind up
scattered about in your HTML.

	③
	I repeat, all of the DocBook elements are processed in the
“m:docbook” mode. I expect failure to declare this mode is going to be a common
error.

	④
	Yes, this whole listing is rather cramped.
I’m trying to make it all narrow
enough to fit in the display without making horizontal scrolling necessary.

	⑤
	Calling xsl:next-match invokes the underlying
processing. The effect of this template is to wrap an HTML
“a” around the default processing for
productname.

It’s worth pointing out that if the tag has an
xlink:href attribute, that will generate an HTML
a as well. A more robust stylesheet would check for that,
but I’m trying to keep the example simple.
3.3. Managing CSS stylesheets
The HTML that the DocBook xslTNG stylesheet
produce is intended to be clean, robust markup for styling with CSS.
Exactly how you control which stylesheet links are produced has
changed several times. The current scheme is this:
	If syntax highlighting is enabled, a link to the
$verbatim-syntax-highlight-css stylesheet is
included.

	If $persistent-toc is
true
a link to the $persistent-toc-css stylesheet
is included.

	If $use-docbook-css is true,
links to the standard DocBook stylesheets are included. Those stylesheets
are docbook.css (for all media),
docbook-screen.css (for screen media), and
docbook-page-setup.css and
docbook-paged.css (for print media).

	The DocBook element that is the context element when the HTML
head is being
generated is processed in the m:html-head-links mode.
By default, that template does nothing, but you can change that in
a customization layer.

	If any CSS stylesheets are defined in
$user-css-links, they are included.

	The DocBook element that is the context element when the HTML
head is being
generated is processed in the m:html-head-last mode.
By default, that template does nothing, but you can change that in
a customization layer.

3.4. Managing media
References to external media through imagedata,
videodata, audiodata, and even
textdata can be tricky to manage. On the one hand, it’s
most convenient if the URIs in the source documents point to the
actual media files. This allows extensions, like the image properties
extension function, to access the
files. At the same time, the references generated in the HTML have to
point to the locations where they will be published. It is often, but
not always, the case that the authoring structures and the publishing
structures are the same.
The stylesheets are regularly tested against five possible
arrangements: three where the media are stored in locations relative
to the XML files and two where the media are stored in a separate
hierarchy. These are unimaginative named “mo-1”, “mo-2”, “mo-3”, “mo-4”,
and “mo-5”.
You can find them in the
src/test/resources/xml hierarchy in the repository.
	mo-1
	All of the XML files are in a single directory, the media are in the same
hierarchy. Media references in the source use relative URIs to refer to the
underlying media: preface.xml refers to the “this is a test”
audio clip as media/this-is-a-test.mp3.

	mo-2
	The XML files are in different directories (this changes the
base URI of the media elements). The media are in the same hierarchy.
Media references in the source use relative URIs to refer to the
underlying media: front/preface.xml refers to the “this is a test”
audio clip as ../media/spinning-top.mp4.

	mo-3
	The XML files are in different directories, but the structure is
deeper. This scenario represents the case where there might be multiple books, each
with their own media, but also a shared media folder “above” the book hierarchies.
The media are in the same hierarchy, but some are “above” the book.
Media references in the source use relative URIs to refer to the
underlying media: book/front/preface.xml refers to the “this is a test”
audio clip as ../../media/spinning-top.mp4.

	mo-4
	The XML files are still in different directories, but the significant change
here is that the media are in their own hierarchy.
Media references in the source use URIs relative to the root of that
hierarchy: book/front/preface.xml refers to the “this is a test”
audio clip as spinning-top.mp4.

	mo-5
	The XML files are in different directories and the media are in their own
hierarchy. What’s different here is that the media hierarchy is further
subdivided by media type.
Media references in the source use URIs relative to the root of media
hierarchy without the media type:
book/front/preface.xml still refers to the “this is a test”
audio clip as spinning-top.mp4, but this time it is found in
media/mp4/spinning-top.mp4 rather than directly in
media.

For each arrangement, we look at five possible output structures:
	A single HTML document with the media in the same relative locations
as the sources.

	A single HTML document with the media in a single media
subdirectory.

	“Chunked” HTML output with the media in the same relative locations
as the sources.

	“Chunked” HTML output with the media in custom locations. (This is especially
tricky for the “mo-5 case because there are two kinds of customization involved.)

	“Chunked” HTML output with the media in a single media
subdirectory.

The list below gives a brief summary of the parameters used to achieve
the desired results for each combination of input and output arrangements.
ⓘ
Note
Remember that in each case, the questions are: can the
stylesheets find the media files to query them and are the correct
HTML references produced? Actually copying the media files from where
they are in the source system to where they need to be in the HTML is
“not our problem.”

	mo-1, mo-2, and mo-3 /
 scenario 1
	No parameters are needed, this combination works correctly with the defaults.

	mo-1, mo-2, and mo-3 /
 scenario 2
	 |mediaobject-output-base-uri = "media/"
 |mediaobject-output-paths = "false"

The output base URI is relative to the “root” of the HTML result.
Setting the output paths to “false” removes intermediate hierarchy from the
image references.

	mo-1, mo-2, and mo-3 /
 scenario 3
	 |chunk = "index.html"
 |chunk-output-base-uri = "/path/to/output/location/"

These parameters aren’t related to media objects, they just tell
the stylesheets how and where to “chunk” the output.

	mo-1, mo-2, and mo-3 /
 scenario 4
	 |chunk = "index.html"
 |chunk-output-base-uri = "/path/to/output/location/"

This combination is really the same as the previous except that
it uses a
custom stylesheet
with a template in the m:mediaobject-output-adjust mode
to add an extra level of hierarchy to the output URIs. This is just an
example of arbitrary, custom processing.

	mo-1, mo-2, and mo-3 /
 scenario 5
	 |chunk = "index.html"
 |chunk-output-base-uri = "/path/to/output/location/"
 |mediaobject-output-base-uri = "media/"
 |mediaobject-output-paths = "false"

The output base URI is relative to the “root” of the HTML result.
Setting the output paths to “false” removes intermediate hierarchy from the
image references.

	mo-4 /
 scenario 1
	 |mediaobject-input-base-uri = "../media/"

The input base URI will be made absolute relative to the base URI
of the input document, so it’s often convenient to specify it as a relative
URI. It’s equally possible to specify it as an absolute URI.

	mo-4 /
 scenario 2
	 |mediaobject-input-base-uri = "../media/"
 |mediaobject-output-base-uri = "media/"
 |mediaobject-output-paths = "true"

This example has two images with the same name in different directories,
so it’s necessary to preserve the output paths.

	mo-4 /
 scenario 3
	 |chunk = "index.html"
 |chunk-output-base-uri = "/path/to/output/location/"
 |mediaobject-input-base-uri = "../media/"

This is the combination of chunking and a single media directory.

	mo-4 /
 scenario 4
	 |chunk = "index.html"
 |chunk-output-base-uri = "/path/to/output/location/"
 |mediaobject-input-base-uri = "../media/"

This combination is really the same as the previous except that
it uses a
custom stylesheet
with a template in the m:mediaobject-output-adjust mode
to add an extra level of hierarchy to the output URIs. This is just an
example of arbitrary, custom processing.

	mo-4 /
 scenario 5
	 |chunk = "index.html"
 |chunk-output-base-uri = "/path/to/output/location/"
 |mediaobject-input-base-uri = "../media/"
 |mediaobject-output-base-uri = "media/"
 |mediaobject-output-paths = "true"

This is effectively scenario 2 with chunking.

	mo-5 / scenarios 1-5
	The “mo-5” scenarios are all the same as the “mo-4” scenarios
with the addition of one more parameter:
 |mediaobject-grouped-by-type = "true"

In each case, this adds the extra “media object type” level to the
URI path.

If you download the source repository, you can see these combinations
in action with the build targets
“mo_number_test_scenario”,
for example, run:
 |./gradlew mo_3_test_2

to see the results of processing “mo-3” in scenario 2. The output
will be in the build/actual directory. The build target
all_mo_tests will run them all.
3.5. Controlling numeration
Numeration refers to the process(es) by which sets, books,
divisions, components, sections, and formal objects are numbered.
There are three separate aspects to numeration: what’s numbered, where
does numbering begin, and does the number inherit from its ancestors.
Consider this book:
 1 |<book>
 | <title>Book title</title>
 | <part>
 | <title>Part title</title>
 5 | <chapter>
 | <title>Chapter title</title>
 | <para>…</para>
 | </chapter>
 | </part>
10 | <part>
 | <title>Another part title</title>
 | <chapter>
 | <title>Another chapter title</title>
 | <para>…</para>
15 | </chapter>
 | <chapter>
 | <title>Yet another chapter title</title>
 | <para>…</para>
 | </chapter>
20 | </part>
 |</book>

Let’s suppose that parts are numbered “I” and “II”. (The number
format is controlled by the localization, see Chapter 4, Localization.) If chapter
numbering begins at the book level, those chapters will be
numbered “1”, “2”, and “3”. If chapter numbering begins at the division level
(the part), those chapters will be numbered “1”, “1”, and “2”.
If division numbers are inherited, those numbers will be “I.1”, “II.1”, “II.2”.

In the 1.x versions of these stylesheets, all of the aspects of
numeration were controlled by three now obsolete parameters:
$component-numbers-inherit,
$division-numbers-inherit, and
$section-numbers-inherit. In the 2.x stylesheets, the
various aspects can be controlled independently and the result is
much more consistent, if a bit more complicated.
The default numeration parameters are designed to cover the most
common use cases and are specified with strings so that they’re easy to control
with parameters. Any numeration scheme can be implemented
with a customization layer, but hopefully that will be necessary only rarely and
in uncommon cases.
To simplify the problem, we divide the DocBook elements into six categories:
	sets
	The set is the only member of this category.

	books
	The book is the only member of this category.

	divisions
	The divisions elements are part and reference.

	components
	The component elements are
acknowledgements,
appendix,
article,
bibliography,
chapter,
colophon,
dedication,
glossary,
index,
partintro,
preface,
refentry, and
setindex.

	sections
	The section elements are
section,
sect1,
sect2,
sect3,
sect4,
sect5,
simplesect.
The refentry section elements are not included because they are
not typically numbered.

	formal objects
	The formal objects are
figure,
table,
example,
equation,
formalgroup,
procedure.

There’s a bit of complexity here. A formalgroup that contains figures
counts as a figure, a formalgroup that contains tables
counts as a table, etc. An equation or procedure
only counts as a formal object if it has a title.

Six parameters control where numbering starts (or restarts):
$sets-number-from,
$books-number-from,
$divisions-number-from,
$components-number-from,
$sections-number-from, and
$formal-objects-number-from. In each case, the value
of the parameter must be the name of one of the categories. Sets and books
can only number from sets, divisions can number from sets or books,
components can number from sets, books, or divisions, etc. It is also
possible to specify the value root to indicate that elements in
the relevant category are numbered sequentially through the whole document.
To assure consistency, “numbering from” resets when the specified
category or one of its ancestors is encountered. In other words, if
you’re formatting a set of books and numbering components from
divisions, the numbering resets when a new division, book, or set begins.
Six parameters control how numbers are inherited:
$sets-inherit-from,
$books-inherit-from,
$divisions-inherit-from,
$components-inherit-from,
$sections-inherit-from, and
$formal-objects-inherit-from. Like the “number
from” parameters, each parameter takes the value of the categories
above it. In this case, however, you can specify more than one
category.
For example, the default value for formal objects is to
inherit from “component section”. That means that the
first figure in chapter 2 will be labeled “2.1” and the first figure
in the first section in chapter 2 will be labeled “2.1.1”, etc.
This most closely reproduces the numbering from the 1.x stylesheets.
3.6. Creating something completely different
Your input documents go through several pre-processing steps
before they are rendered into HTML. If you want to produce completely
different outputs, the place to start is with root template in the
m:docbook mode.
Consider, for example,
the task of creating a JSON version of the Table of Contents. In principle, you could
write your own stylesheet to do this, but leveraging the
DocBook xslTNG Stylesheets means you can make use of functions like
f:generate-id() to create links.
To produce completely different results, override the root template in the
m:docbook mode:
1 |<xsl:template match="/" mode="m:docbook">
 | <xsl:document>
 | <!-- your processing here -->
 | </xsl:document>
5 |</xsl:template>

This template must return a document node.
Note that you can mix-and-match your processing with default
processing by processing DocBook elements in the
m:docbook mode.
Here is a simple example of a stylesheet that produces a JSON version of the
Table of Contents for a DocBook document:
 1 |<?xml version="1.0" encoding="utf-8"?>
 |<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 | xmlns:db="http://docbook.org/ns/docbook"
 | xmlns:f="http://docbook.org/ns/docbook/functions"
 5 | xmlns:m="http://docbook.org/ns/docbook/modes"
 | xmlns:t="http://docbook.org/ns/docbook/templates"
 | xmlns:xs="http://www.w3.org/2001/XMLSchema"
 | xmlns="http://www.w3.org/1999/xhtml"
 | exclude-result-prefixes="db f m t xs"
10 | version="3.0">
 |
 | <!-- This href has to point to your local copy
 | of the stylesheets. -->
 | <xsl:import href="docbook/xslt/docbook.xsl"/>
15 |
 | <xsl:output method="text"/>
 |
 | <!-- Suppress xslTNG's default HTML output; note that this template
 | must return a document node. -->
20 | <xsl:template match="/" mode="m:docbook">
 | <xsl:document>
 | <xsl:apply-templates select="." mode="TOC"/>
 | </xsl:document>
 | </xsl:template>
25 |
 | <!-- The templates below generate a simple JSON ToC. -->
 |
 | <xsl:template match="/" mode="TOC">
 | {"toc": [
30 | <xsl:apply-templates mode="TOC"/>
 |]}
 | </xsl:template>
 |
 | <xsl:template match="db:part|db:article|db:section|db:chapter" mode="TOC"
35 | expand-text="yes">
 | <xsl:if test="preceding-sibling::db:part
 | | preceding-sibling::db:article
 | | preceding-sibling::db:section
 | | preceding-sibling::db:chapter">,
</xsl:if>
40 | {{
 | "ref": "{f:generate-id(.)}",
 | "title": "{normalize-space(db:info/db:title)}",
 | "subtitle": "{normalize-space(db:info/db:subtitle)}",
 | "items": [
45 | <xsl:apply-templates select="db:part|db:article|db:section|db:chapter" mode="TOC"/>
 |]
 | }}
 | </xsl:template>
 |
50 | <xsl:template match="*" mode="TOC">
 | <xsl:apply-templates select="*" mode="TOC"/>
 | </xsl:template>
 |</xsl:stylesheet>

ⓘ
Note
This example is meant as a starting point; it’s not robust as it only handles
a few of the possible elements that might appear in a Table of Contents.

When processing documents this way, be aware that you are transforming the pre-processed,
normalized versions of your input documents. For example, whether or not you put
info wrappers around the titles of your sections, in the pre-processed input,
titles always appear inside info wrappers.
This normalization greatly simplifies processing in many places.

*
Ok,
technically, this stylesheet has a couple of namespace references that aren’t
strictly necessary so it could be a teeny bit simpler, but you’ll need those
declarations (and more!) if you want to do anything useful.

Chapter 4. Localization
The DocBook xslTNG stylesheets support
localization in more than 70 languages. At the time of this writing:
Afrikaans, Albanian, Amharic, Arabic, Assamese, Asturian, Azerbaijani,
Bangla, Basque, Bosnian, Bulgarian, Catalan, Chinese, Chinese
(Taiwan), Chinese Simplified, Croatian, Czech, Danish, Dutch, English,
Esperanto, Estonian, Finnish, French, Galician, Georgian, German,
Greek, Gujarati, Hebrew, Hindi, Hungarian, Icelandic, Indian Bangla,
Indonesian, Irish, Italian, Japanese, Kannada, Kirghiz, Korean, Latin,
Latvian, Lithuanian, Low German, Malayalam, Marathi, Mongolian,
Northern Sami, Norwegian Bokmål, Norwegian Nynorsk, Oriya, Polish,
Portuguese, Portuguese (Brazil), Punjabi, Romanian, Russian, Serbian
in Cyrillic script, Serbian in Latin script, Slovak, Slovenian,
Spanish, Swedish, Tagalog, Tamil, Telugu, Thai, Turkish, Ukrainian,
Urdu, Vietnamese, Welsh, and Xhosa.
4.1. Background
Near the end of the previous millennium, I was working
on the
DSSSL
stylesheets for DocBook. They were popular enough that users of languages
other than English wanted to use them.
I invented a mechanism for doing simple localization
so that the word “Chapter” in “Chapter 5” would, for example,
be spelled “Chapitre” if the
book was in French, and “Розділ” if it was in Ukrainian.
What started as a simple word substitution system grew a few
macro facilities and became a little more sophisticated*.
Over time, with the aid of dozens of volunteers around the world
who contributed files for their languages, the DocBook stylesheets
developed localization capabilities that were for the most part good
enough.
Fast forward a few years and those language-specific
localization files, and some of those mechanisms, were ported to the
XSLT 1.0 stylesheets for DocBook.
Fast forward another decade and those XSLT 1.0 localization
files and some of the mechanisms were ported to the XSLT 2.0 stylesheets
for DocBook.
Fast forward the better part of another
decade and those XSLT 2.0 localization files and some of the
mechanisms were ported to the DocBook xslTNG
stylesheets.
Well. Sort of. Initially, I tried to replace the complex system
of templates with a model that took the text that had to be generated
and decomposed it into logical parts. It worked fine for English and
many other languages, but didn’t account for the complexity of
many others, such as Chinese.**
Starting in version 2.0.0, the xslTNG stylesheets have reverted
back to a templating system. The localization files have been
transformed a little bit to make some of the customization easier (I
hope). They can’t stray too far from the original designs because I
must reuse the localization data I have. I don’t want to devise a
system that requires another army of volunteers to provide new
localization data.
4.1.1. Consequences
One unfortunate consequence of this history is that there’s some
cruft in the localization files. There are mappings and possibly
templates that aren’t actually used. Or, at least, they’re not used in
the standard DocBook stylesheet. They might be used in customization
layers.
I made a few attempts to trim out cruft, but found all of the
results unsatisfying. So, at least for the moment, I’ve left it in
place. Like everything on earth, it’s mostly
harmless.

4.2. Overview
In this context, localization mostly refers to “generated text”,
words and symbols that appear in a published DocBook document that
aren’t present in the original XML. Consider Figure 4.1, “Sample book source”.
 1 |<book xmlns="http://docbook.org/ns/docbook"
 | version="5.0" xml:lang="en">
 |<info>
 | <title>Localization Example</title>
 5 |</info>
 |<part>
 |<title>Part the first</title>
 |<chapter xml:id="chap">
 |<title>Chapter the first</title>
10 |<para>This is a tiny sample chapter.
 |See also <xref linkend="app"/>.</para>
 |</chapter>
 |</part>
 |<appendix xml:id="app">
15 |<title>An appendix</title>
 |<para>This is a tiny sample appendix.
 |See also <xref linkend="chap"/>.</para>
 |</appendix>
 |</book>

Figure 4.1. Sample book source

It might be published as shown in Figure 4.2, “Sample book (annotated)”.
Here we can see examples of several different kinds of generated
text.
[image: Image of a stack of papers with the example book published on the uppermost page. The published book includes additional generated text highlighted.]

Figure 4.2. Sample book (annotated)

The title “Table of Contents” is entirely generated; it appears
nowhere in the XML. The chapter title appears in the text, but it’s
labeled “1.” in the list of titles, “Chapter 1.” in the chapter itself,
and “Chapter 1” (without the title) in the cross reference.
Now consider a French version of the document in
Figure 4.3, “Sample book source (French)”.
 1 |<book xmlns="http://docbook.org/ns/docbook"
 | version="5.0" xml:lang="fr">
 |<info>
 | <title>Exemple de Localisation</title>
 5 |</info>
 |<part>
 |<title>Première partie</title>
 |<chapter xml:id="chap">
 |<title>Chapitre un</title>
10 |<para>Ceci est un petit exemple de chapitre.
 |Voir aussi <xref linkend="app"/>.</para>
 |</chapter>
 |</part>
 |<appendix xml:id="app">
15 |<title>Annexe</title>
 |<para>Ceci est un petit exemple d’annexe.
 |Voir aussi <xref linkend="chap"/>.</para>
 |</appendix>
 |</book>

Figure 4.3. Sample book source (French)

In this case, the published version will have different
localization, as
shown in Figure 4.4, “Sample book (French)”.
[image: The published book again, this time with French generated text.]

Figure 4.4. Sample book (French)

The question is, how is this accomplished? The answer, I’m
afraid, is not simple.
It begins with a localization file.
4.3. Localization files
The localization files are in
src/main/locale in the repository. The
localization file is designed to be simple enough to edit by hand. The stylesheets
use compiled versions created by processing the input locale with
src/main/xslt/modules/xform-locale.xsl to produce
the files in
xslt/locale in the distribution.
A locale begins by defining the language it supports and
providing an English language name for it. The language
attribute identifies the language (in the same terms as
xml:lang) to which this localization applies.
That’s followed by metadata about the file (authors, etc.), then
mappings, groups, lists, and letters as shown in
Figure 4.5, “Example locale file (excerpted)”. We’ll consider each
section in detail below.
 1 |<locale xmlns="http://docbook.org/ns/docbook/l10n/source"
 | xmlns:db="http://docbook.org/ns/docbook"
 | language="en" english-language-name="English">
 | <info>
 5 | …
 | </info>
 | <mappings>
 | <gentext key="above">above</gentext>
 | …
10 | </mappings>
 | <group name="title">
 | <template match="self::db:chapter">{chapter} %l%.%c</template>
 | …
 | </group>
15 | <list name="_default">
 | <items>%c</items>
 | <items>%c {and} %c</items>
 | <items>%c<repeat>, %c</repeat>, {and} %c</items>
 | </list>
20 | <letters>
 | …
 | </letters>
 |</locale>

Figure 4.5. Example locale file (excerpted)

4.3.1. Mappings
The mappings section is a simple list of key/value pairs.
Each gentext element defines a key and its replacement.
1 | <mappings>
 | <gentext key="above">above</gentext>
 | <gentext key="abstract">Abstract</gentext>
 | …
5 | <gentext key="xrefto">xref to</gentext>
 | </mappings>

These mappings serve two purposes. For many languages, a lot of the
work of defining a new localization is just updating these mappings.
For a stylesheet customization layer, it provides a mechanism for remapping
on an ad hoc basis.
In a localization template, any key entered in curly braces will
be replaced by the mapping. In other words, for the example above,
{abstract} will be replaced by the word “Abstract”.
This mapping is done when the document is transformed, not when the
localization file is compiled.
4.3.2. Group
Groups are the primary templating system. In a context where
generated text is required, a group is selected and within that group,
a template is selected. The template is selected by evaluating the
expression in the match attribute with the current node
as the context item. A template with the match express true()
will always succeed; it is used as a fallback.
The title-numbered group determines how
titles are formatted if they are numbered, (there’s also
title-unnumbered when titles aren’t being
numbered):
1 |<group name="title-numbered">
 | <template match="self::db:section[ancestor::db:preface]">%c</template>
 | …
 | <template match="self::db:appendix">{Appendix} %l%.%c</template>
5 | …
 | <template match="self::db:warning">%c</template>
 | <template match="true()">%l%.%c</template>
 |</group>

(Note that not all titles are numbered,
this is just the group that’s used if they could be. See
$division-numbers,
$component-numbers, and
$section-numbers.)
Within a template, two kinds of substitution are performed: names in
curly braces are replaced by the corresponding mapping and %-letter values
are substituted as follows:
Table 4.1. Template %-letter substitutions
	%-letter	Substitution
	%c	The content (for example, the text of the title)
	%l	The label (for example, “Chapter 1” or “see also”)
	%p	The page number (not yet implemented)
	%o	The olink title (not yet implemented)
	%.	The separator (often, “. ”)
	%%	A literal % character

If the title group is being used to generate
text for the chapter from our example
document:
	The chapter context is used to select
the template ({chapter} %l%.%c).

	The string {chapter} is replaced by the mapping for
chapter, which is “Chapter” in English.

	The label %l is “1” because this is the first
chapter. (In fact, constructing the label uses templates from the
localization file as well.)

	The separator %. is “. ”. (Like the label, this is
also constructed from a separate query to the localization file.)

	And the content %c is “Chapter the first”. (There’s no markup
in this title, but if there was, it would be retained. The content is a list of items,
not a string.)

	Literal text, such as the non-breakable space between “{chapter}”
and “%l”, is retained verbatim.

4.3.3. List
List elements are used to format items that can be repeated (terms
in a variable list, lists of authors, lists of “see also” terms, etc.).
The list consists of a series of items. Within each item, one or more
content replacements is specified with %c. The items
must be arranged so that there’s a match for one, two, three, etc. items.
If an item contains a repeat, that repeat will be used for as many
items as necessary to complete the list formatting. The default
list format is:
1 | <list name="_default">
 | <items>%c</items>
 | <items>%c {and} %c</items>
 | <items>%c<repeat>, %c</repeat>, {and} %c</items>
5 | </list>

Consider how a list of four authors in an authorgroup
would be formatted. Call them A, B, C, D, for simplicity (and assume
there’s no list for “authorgroup”, so the
“_default” will be used).
The first two items match one and two items, respectively. They
aren’t appropriate for a list of four items. The third item contains
three items and a repeat, so that can be used for a list of four (or
more) items.
The first %c is “A”. The second %c is
in a repeat, followed by another %c. There are three
elements left in the list at this point, so two will be used in the
repeat and the last one will follow it.
The result will be A, B, C, and D where the
word “and” was found by looking for the and key in
the mappings.
4.3.4. Letters
The letters group is used to identify the lexical order and grouping
of letters.
 1 | <letters>
 | <l i="-1"/>
 | <l i="0">Symbols</l>
 | <l i="10">A</l>
 5 | <l i="10">a</l>
 | …
 | <l i="20">B</l>
 | <l i="20">b</l>
 | …
10 | </letters>

All of the symbols with the same “i” value will be grouped
together.
This mechanism dates from the days before XSLT supported
language-specific collations. It is used in generated indexes, but perhaps it should simply
be phased out.
4.4. Customizing a localization
For many users, the localizations provided are entirely sufficient.
But if you want to change them, you have a few options.
4.4.1. Replacing entire localization files
If you want to replace an entire localization file (if, for example,
you want to apply the same changes to a set of stylesheets), you can
approach that as follows:
	Copy the localization source files.

	Update the ones you wish to change.

	Compile them all with
src/main/xslt/modules/xform-locale.xsl saving
the output in a new location.

	In your stylesheet, change the
$v:localization-base-uri to point to the directory
where the new locales reside. Those locale files will be used.

4.4.2. Overriding mappings, groups, etc.
If you only want to override a small number of localization
features, it may be simpler to do so directly in your stylesheet.
The varable $v:custom-localizations will be merged
with the default localizations before transformation begins.
Suppose, for example, that you wanted:
	The table of contents title to simply be “Contents”,

	To omit the word “Appendix” from the appendix title, and

	To change the form of the cross reference to
appendixes to read “App. A” instead of “Appendix A”.

The following customization would accomplish that:
 1 |<xsl:variable name="v:custom-localizations">
 | <locale xmlns="http://docbook.org/ns/docbook/l10n/source"
 | language="en"
 | english-language-name="English">
 5 | <mappings>
 | <gentext key="TableofContents">Contents</gentext>
 | </mappings>
 | <group name="title-numbered">
 | <template name="appendix">%l%.%c</template>
10 | </group>
 | <group name="xref-number">
 | <template name="appendix">App. %l</template>
 | </group>
 | </locale>
15 |</xsl:variable>

Note that it defines (a portion of) a locale source file for the
language en. These changes only apply to that
locale.
This fragment replaces the mapping for
TableofContents and the templates for numbered
titles and numbered cross references.
To update multiple languages, put additional locale
elements in the variable as siblings.
Formatting our example document above now produces:
[image: The published book again, this time with different generated text.]

Figure 4.6. Sample book (Alternate)

4.4.3. Changing the group
Sometimes, rather than change a template, you want to change
which group of templates is used. This is controlled by two variables:
$v:user-title-groups and
$v:user-xref-groups.

4.4.3.1. Changing the title group
The $v:user-title-groups element consists of a
list of title elements, each with an xpath
attribute, a group attribute, and an optional template
attribute.
Suppose the stylesheet is trying to generate a title for an
element. It considers each title element in turn. The
xpath expression is evaluated with the element as the
context item. If the effective boolean value of the expression is
true(), then that title is selected and templates from
the corresponding group are used.
If a template attribute is present, a template with
that name is used. Otherwise the local name of the element is used as
the template name.
By default, sections in a preface are not numbered. That’s
because the default title groups include:
 |<title xpath="self::db:section[ancestor::db:preface]"
 | group="title-unnumbered"/>

If you add a title that matches sections in a preface to
$v:user-title-groups, it will take precedence.
For example:
 |<title xpath="self::db:section"
 | group="title-numbered"/>

Because all of the user groups are consulted first, it isn’t
necessary to include the predicate that limits this title to sections
in a preface (although it wouldn’t change the result if you did).
4.4.3.2. Changing the cross reference group
Cross references are processed just like titles, except that the
$v:user-xref-groups element consists of a
list of crossref elements.
The default for cross references to chapters and appendixes is
“xref-number-and-title”, so you get things like “Chapter
1. The Chapter Title”. In order to get a different presentation in the
localization example used in this chapter, the following localization
is used:
 |<xsl:variable name="v:user-xref-groups" as="element()*">
 | <crossref xpath="self::db:chapter|self::db:appendix"
 | context="xref-number"/>
 |</xsl:variable>

That’s why the cross reference to the first chapter is just
“Chapter 1”.

4.5. Caveats
There’s currently little documentation to tell you which group
or template to change. The names are supposed to be somewhat self
explanatory (for speakers of English), but sometimes you just have to
look in the stylesheet.
The formalgroup element is unique in DocBook in that
its label depends on what it contains. A formalgroup of
figure elements is itself a “Figure” where a
formalgroup of example elements is an
“Example”.
If you need to change it, you may have to create your own
template for the formalgroup element in the
m:headline mode. The default version is in
modules/titles.xsl.

*
I’m not sure you’d pick a twenty-something, monolingual Anglophone
American to do this work if you were planning ahead, but that’s what
happened.

**
Turns out a fifty-something, monolingual Anglophone American isn’t
much of an improvement, really.

Chapter 5. Implementation details
This section sketches out some features of the implementation.
It would probably be better to build an annotated
Definitive Guide or
something, but this will have to do for now.

5.1. Customizing chunking
Chunking is controlled by the $chunk-include and
$chunk-exclude parameters. These parameters are both
strings that must contain an XPath expression.
For each node in the document, the $chunk-include
parameter is evaluated. If it does not return an empty sequence, the element
is considered a chunking candidate. In this case, the
$chunk-exclude parameter is evaluated. If the exclude
expression does return an empty sequence, then the element identified
becomes a chunk. (If the exclude expression returns a non-empty value, the element
will not become a chunk.)
5.2. Lengths and units
Lengths appear in the context of images (width and height) and
tables (column widths). Several different units of length are
possible: absolute lengths (e.g., 3in), relative lengths (e.g., 3*),
and percentages (e.g., 25%). In some contexts, these can be combined:
a column width of “3*+0.5in” should have a width equal to 3 times the
relative width plus ½ inch.
In practice, some of the more complicated forms in TR
9502:1995 have no direct mapping to the units available in
HTML and CSS. The stylesheets attempt to specify a mapping that’s
close. Broadly, they take the nominal width of the table
($nominal-page-width, subtract out the fixed
widths, divide up the remaining widths proportionally among the
relative widths, and compute final widths. The final widths can be
expressed either in absolute terms or as percentages.
In handling the width and height of images, the intrinsic width
and height of the image in pixels are converted into lengths by
dividing by $pixels-per-inch. Nominal widths are
taken into consideration if necessary.
ⓘ
Note
Determining the intrinsic size of an image depends on an extension function.
See Section 2.5, “Extension functions”. Many bitmap image formats are supported.
The bounding box of EPS images is used, if it’s present. The intrinsic size of
SVG images is not available.

The list of recognized units (in, cm, etc.) are taken from
$v:unit-scale.
5.3. Verbatim styles
There are four verbatim styles: lines, table,
plain, and raw.
	lines
	In the lines style, each line of the verbatim environment is
marked up individually. In this style, lines can be numbered and
callouts can be inserted.

	table
	In the table style, each line of the verbatim environment is
marked up individually, very much like the lines style. In this style,
lines can be numbered and callouts can be inserted. It differs from
the lines style in that the whole thing is wrapped in a table.
The table has one row and two columns. The line numbers appear in the
first column, the lines in the second. This format was added in order
to improve the display in user agents that don’t support CSS.
Ironically, in the course of adding this style, a number of changes
were made to the way line numbers are formatted in the lines style
making it largely, perhaps entirely, unnecessary.

	plain
	In the plain style, callouts can be inserted, but additional markup is not
added (except for the callouts). Consequently, it isn’t possible to do line numbering
or syntax highlighting. (It may be possible to provide these features with JavaScript
libraries in the browser, however.)

	raw
	In the raw style, no changes are made to the verbatim content. It’s output as
it appears. Inline markup that it contains, emphasis or other elements, will
be processed, but you cannot add line numbers, callouts, or syntax highlighting.

Consult I. Parameter reference for a variety of parameters that control
aspects of verbatim processing.
5.3.1. Line numbers
In the lines and table styles, line
numbers may be added to the beginning of some (or all) lines. Prior to version
1.10.0, the stylesheets inserted the numbers without any padding:
 |
 | 5
 | The line of text
 |

(The newlines and indentation in these examples are for clarity. In practice, these
are inside a pre where every
space counts and they’re all run together with line breaks only occurring
between lines.)
In a graphical browser with CSS support, this looked fine. But
without CSS, the line numbers and the text that followed them could
flow together and the alignment of the numbers was unclear.
Starting in version 1.10.0, the stylesheets insert padding
spaces before each number so that they will all be aligned. If the
largest line number is three digits long, every number smaller than
100 will be padded to a width of three characters. A single space is
added after the number to separate it from the text that follows.
An additional separator may also be inserted, as shown here.
 |
 | 5 |
 | The line of text
 |

These changes have no visible effect when CSS is used to style
the verbatim environment. But without CSS, the numbers are aligned and
separated from the text that follows. The
$verbatim-number-separator is generally
suppressed by CSS, but is visible in text browsers.
5.4. Processing mediaobjects
Starting in version 1.11.0, the way media objects are processed has been
refactored. This is designed to support fallback at both the object
level (imageobject, audioaobject, videoobject,
textobject, and imageobjectco) and at the data
level (imagedata, audiodata, videodata,
and textdata within the objects).
Each data element and object element is processed in the
m:mediaobject-info mode. This returns a map for each object
that contains an array of maps, one for each data element:
Table 5.1. The object map
	Key	Value
	content-types	An array of the distinct content types in the data elements
	datas	An array of data maps
	extensions	An array of the distinct extensions in the data elements
	node	The media object node

Each data map has the following structure:
Table 5.2. The data map
	Key	Value
	align	The alignment of the data (if specified)
	content-type	The computed content type for the data
	contentheight	The content height of the data (if specifieda)
	contentwidth	The content width of the data (if specified)
	extension	The extension of the data file (if there is one)
	fileref	The original fileref attribute value
	height	The height of the data (if specifieda)
	href	The computed href value for the HTML element;
this takes account of the $mediaobject-input-base-uri and
$mediaobject-output-base-uri).

	node	The data element
	params	Any multimediaparams associated with the data element
	properties	The properties of the element (as returned by the extension funtions;
this can include EXIF data and metadata)
	scale	The scaling factor (if there is one) or 1.0
	scalefit	True if the image should be scaled to fit (implicitly or explicitly)
	uri	The computed absolute URI of the input data
	valign	The vertical alignment of the data (if specified)
	width	The width of the data (if specifieid)

a
DocBook
uses “depth” instead of “height”, but we convert
it to height for consistency with most other systems

The uri and href properties are computed
by processing the data elements in the m:mediaobject-uris mode.
Armed with information about the objects and the data associated with them,
the stylesheets proceed to choose an object and then process it. Each object is
considered in turn, if any of the data elements it contains were excluded, then it is
rejected. The first object where all of the elements are acceptable is selected.
Consider this example:
 1 |<mediaobject>
 |<imageobject>
 | <imagedata fileref="image.svg"/>
 | <imagedata fileref="image.eps"/>
 5 | <imagedata fileref="image.png" width="4in"/>
 |</imageobject>
 |<imageobject>
 | <imagedata fileref="image.svg"/>
 | <imagedata fileref="image.png" width="40em"/>
10 |</imageobject>
 |</mediaobject>

If this is being processed for online presentation, the default
value of $mediaobject-exclude-extensions will exclude the
EPS file. Because one of it’s data elements was excluded, the processor will choose
the object containing only the SVG and PNG images for online presentation.
Once an object is selected, an appropriate wrapper is created and all
of the alternatives are placed within it. So the example above will result in
picture element containing
a
source for the SVG image and an
img for the fallback PNG.

ⓘ
Note
Consistent with HTML, only the size, scaling, and alignment attributes of
the last alternative data element are considered! These apply
irrespective of which alternative is selected.

5.4.1. Mediaobject URIs
Media object URIs are tricky to handle. It’s most
convenient if the URIs in the source documents point to the actual media files.
This allows extensions, like the image properties
extension function, to access the files.
At the same time, the references generated in the HTML have to point to the
locations where they will be published.
In previous versions, the stylesheets attempted (broadly) to use
the relative difference between the input and output base URIs to work out
the correct relative URIs for media. That imposed restrictions on the
authoring environment that weren’t always easy to work with.
Starting in verison 2.0.6, the mechanisms for finding sources
and producing references in the output has changed. Three parameters
are used:
	$mediaobject-input-base-uri
	If the $mediaobject-input-base-uri is empty (the default),
then URIs in the source document are assumed to be relative to the base URI on
which they occur. This is the usual case if you mix XML and media into the same
directory structure on the filesystem.
If the $mediaobject-input-base-uri is not empty, it is
used to resolve all media URIs. If it’s initialized with a relative URI, that URI will
be made absolute against the base URI if the input document.

	$mediaobject-output-base-uri
	If the $mediaobject-output-base-uri is empty (the default),
then URIs in the output are treated as parallel to the URIs in the input. If the
reference ../image.png works in the source document, it’s assumed
that will also work in the output document.
If the $mediaobject-input-base-uri is not empty, it is
the base URI used for media objects. If this is a relative URI, it is taken to be
relative to the root of the output hierarchy.
Suppose the output base URI is https://images.example.com/, then
a reference to image.png will appear as
https://images.example.com/image.png in the output.
If the output base URI is media/, then
a reference to image.png will appear as
media/image.png in the output. If the document is chunked, the paths back
to the output directory are relative. In otherwords, if the reference to
image.png appears in a chunk that will be located at
back/appendix.html, then the media URI will be
../media/image.png.

	$mediaobject-output-paths
	This parameter controls whether the relative paths in the input URIs apply
to the output URIs as well. If the parameter is true,
the output base URI is media/, and the input URI is
path/to/image.png, then the output reference will be to
media/path/to/image.png. If it’s false, then the output reference
will be to media/image.png.

For a further discussion of the options, see
Section 3.4, “Managing media”.
☝
Important
The stylesheets are not responsible for actually copying the media files
into the correct locations in the output. The stylesheets only generate the HTML
files and the references. You must copy the images and other media with some
other process.

5.5. Templates
It’s difficult to make title pages for documents easy to customize. There
is a lot of variation between documents and the styles can
have very precise design constraints. At the end of the day, if you need complete control,
you can define a template that matches the element in the
m:generate-titlepage mode and generate all of the markup you wish.
The default title page handling attempts to make some declarative customization
possible by using templates. A typical header template looks like this:
 1 |<db:section>
 | <header>
 | <tmp:apply-templates select="db:title">
 | <h2><tmp:content/></h2>
 5 | </tmp:apply-templates>
 | <tmp:apply-templates select="db:subtitle">
 | <h3><tmp:content/></h3>
 | </tmp:apply-templates>
 | </header>
10 |</db:section>

Any HTML element in the template will be copied to the output. The semantics
of a “template apply templates” element (tmp:apply-templates) is that
it runs the ordinary xsl:apply-templates instruction on the elements that
match its select expression. If they result is the empty sequence (e.g, if there is no
subtitle), nothing is output. If there is a result, the content of the
tmp:apply-templates element is processed. Anywhere that
tmp:content appears, the result of applying templates will be output.
In this example, if the title is “H2O” and there is no subtitle,
the resulting HTML title page will be:
 |<header>
 | <h2>H₂O</h2>
 |</header>

5.6. Annotations
The stylesheets fully support annotations, including a number
of presentation styles enabled by JavaScript in the browser. They also
support an extension of the documented semantics of
annotation.
Annotations are applied to elements with links. Either the
element must point to its annotations (with an annotations
attribute) or the annotations must point to the elements they annotate
(with an annotates attribute). These are documented as
ID/IDREF links but they are not IDREFS attributes
because annotations may be stored separately.
Starting in version 1.5.1, the DocBook xslTNG
Stylesheets⌖1 support a non-standard extension: if you place
the string xpath: in the annotates attribute of
an annotation, then the rest of the attribute is assumed to contain
an XPath expression that points to the element(s) to which the annotation
applies. (If you want to put IDREF values before the xpath: token,
that’s fine, but you can’t put them after; the expression continues to the end
of the attribute value.)
Suppose, for example, that you wanted to annotate the stylesheet
title in the previous paragraph. The standard mechanisms would require that
you either put an xml:id attribute on the element or point to the
annotation from the element. With the XPath extension, you can do this:
1 |<annotation
 | annotates="xpath:preceding-sibling::db:para/db:citetitle"
 | xmlns:db="http://docbook.org/ns/docbook">
 |<para>This annotation applies to the stylesheet title.
5 |For a discussion of this annotation, see the
 |following paragraphs.</para>
 |</annotation>

When the XPath expression is evaluated, the annotation
element is the context item. Often, this means that you’ll want to start
the expression with id() or /.
The namespace context for the expression is also the annotation
element, that’s why I’ve added the DocBook namespace binding for the
db prefix. In practice, if you’re doing this on
several annotations, you can just put all the namespace bindings on a common
ancestor. All of the bindings in scope on the
annotation element are available in the expression.
Caveats:
	There’s no way to have multiple XPath expressions. You can’t put
“xpath:” in there twice. If you want an annotation to apply to
multiple elements, you’ll have to construct a single expression that selects
all the elements, or duplicate the annotation, or use ID/IDREF links.
If this turns out to be a serious limitation in practice, additional
syntax could be added to support multiple expressions, but it doesn’t
seem necessary.

	You can only select elements. There’s no way to select the third word
in a particular paragraph, for example, unless it already has some markup
around it. There’s also no way to select a comment or a processing instruction.

The placement of the annotation marker (“⌖” by default) can also be
controlled globally and on individual annotations. The
$annotation-placement parameter provides global control.
To specify the position for an individual annotation, put the token
“before” or “after” in the role
attribute on the annotation.
5.7. The pre- and post-processing pipeline
Processing a DocBook document is a multi-stage process. The
original document is transformed several times before converting it to
HTML. The standard transformations are:
	Adjust the logical structure. Adds an XML base attribute to the root of the
document and converts media object entityref attributes
into fileref attributes.

	Perform XInclude processing. Only occurs if the appropriate
extension function is available and if the document contains XInclude
element.

	Convert DocBook 4.x to DocBook 5.x. Only occurs if the root element is not in
a namespace.

	Peform transclusion.

	Perform profiling.

	Normalize the content. This removes a lot of variation that’s allowed for authoring.
For example, authors aren’t required to use an info element if a formal object
has only a title. This process adds the info element if it’s missing.

	Resolve annotations.

	Process XLink link bases.

	Validate. Only occurs if the appropriate
extension function is available and the stylesheet specifies a
$relax-ng-grammar.

	Process Oxygen change markup. Only occurs if
$oxy-markup is true and the document contains
Oxygen change markup processing instructions.

A customization can introduce transformations to the original
document: before the standard transformations by specifying them in
$transform-original; after the standard transformations
but before the transformation to HTML by specifying them in
$transform-before; or after the HTML transformation
by specifying them in $transform-after. (If you need
to insert a transformation in the middle of the standard transformations,
you’ll have to update the $v:standard-transforms
variable.)
ⓘ
Note
Transformations in $v:transform-after will be processing
the HTML result of applying the “main” DocBook transformation.

Each of the transformation variables holds a list of transforms that will
be applied in the order specified. Each member of the list can be a map or a
string. If a string is provided, it’s the equivalent of providing this map:

 |map {
 | 'stylesheet-location': $the-string
 |}

The map can have several keys:
Table 5.3. The transformation map
	Key	Value
	stylesheet-location	The location of the XSLT stylesheet that performs this transformation.
This key is required.
	extra-params	A map of QName/value pairs. These parameters will be made available to
the transformation in addition to all of the standard parameters available to a
standard DocBook stylesheet.
	functions	A list of functions (expressed as EQNames). The transformation will only be
run if every extension function listed is available.
	test	An arbitrary XPath expression. The expression will be evaluated with the
document as the context item. If it returns an effective boolean value of true,
the transformation will be run.

Annotations

⌖1

This annotation applies to the stylesheet title. For a discussion
of this annotation, see the following paragraphs.

Chapter 6. Building the stylesheets
If you wish, you can also clone the distribution and build them
yourself. The distribution is designed to be self contained. In a Unix
or Mac environment, running:

./gradlew dist

will build the stylesheets. Building will:
	Compile the stylesheets and run the unit tests. The compiled stylesheets
will be available in build/xslt.

Running all the tests requires building the reference guide and
a few other things. You can build the stylesheets without running any
of the tests with the makeXslt task.

	Compile the extension functions. The compiled extension functions will be
available in build/libs. The jar task
will compile the extensions without running the tests.

	“Compile” the Python script that helps run
the stylesheets. (It’s not really compiled, but several stylesheet-version-specific
strings are interpolated.)
The copyBin task will setup the Python script
without running the tests.

☝
Important
In principle, it should be possible to build the stylesheets on Windows.
In practice, it doesn’t work. One would imagine that mapping path (“:”→“;”)
and filename (“\”→“/”) separators and constructing URIs for paths
(“C:\Users\…”→“file:///C:/Users/…”) would
make it work. In the author’s experience, that is not the case. Pull requests are welcome.
It may be more expedient to build in the Linux subsystem on Windows 10 or in a Docker
container.

6.1. Prerequisites
In order to build the stylesheets, you must configure your
system with several prerequisites:
	Gradle. The stylesheet
builds use the
Gradle wrapper to assure a consistent environment across systems, it’ll
be downloaded automatically the first time you build.

	A modern version of Java. (Java 1.8 or later, for example.)

	Python 3 and
the click module.
The Pygmentize program is also
required for syntax highlighting, though that’s not technically a build requirement.

If you discover other prerequisites that have been overlooked,
or have questions or suggestions about how best to manage them, please
let us know.
6.1.1. Saxon EE
You don’t need a Saxon EE license to build or run the stylesheets.
If you change any of the transforms in src/main/xslt/transforms,
you will need a Saxon EE license to recompile them as exported SEF files.
If you don’t have an EE license, the build process will simply
omit the SEF versions and the “source” versions, including any
modifications that you’ve made, will be used.
That’s the theory, anyway. I’ve tested it, but if you have any trouble, please
open an issue.
6.2. Repository structure
The most significant parts of the repository hierarchy are:
 |src/main/xslt
 |src/main/xslt/transforms
 |src/main/xslt/modules

These are the sources for the stylesheets themselves. The
transform subdirectory contains the preprocessing
stylesheets that are run as separate transforms. The
modules directory doesn’t have any special significance, it
just makes the main entry points easier to find.
You cannot run the XSLT stylesheets directly from the source
location. You must build them first with the
makeXslt build target.
 |src/main/web
 |src/main/web/resources/css
 |src/main/web/resources/js

These are the CSS and JavaScript files needed for accurate rendering in the
browser or formatter process.
 |src/main/locales/locale-10
 |src/main/locales/locale

The local-10 directory holds copies of the
localization files from the XSLT 1.0 stylesheets. They’re transformed
into the locale versions by the build system. This whole
area is one that needs work.
 |src/test/xspec
 |src/test/generators
 |src/test/resources/xml
 |src/test/resources/expected

These are the testing resources. You cannot run the XSpec tests
directly from src/test/xspec. The build system copies them into
build/xspec along with a few XSpec tests generated
automatically by the stylesheets in generators.

The library of DocBook documents that are used for testing is
stored in the xml directory. The HTML files in
expected correspond to the expected results. The expected
results aren’t usefully viewed in a browser. Only the
body element and its
decendants are stored in the expected results. This avoids a lot of
noise in the
head.
 |src/main/java

These are the sources for the extension functions.

 |src/guide
 |src/website

These are the sources, resources, and ancillary files for the
reference guide and the website.
 |tools

The tools directory holds a number of stylesheets and other scripts used
by the build process.
 |lib

The lib directory holds third party jar files. This is also where
you can put your Saxon PE or EE files if you have them.
 |build
 |build/actual
 |build/xslt

The build system puts all of its temporary files under build. It’s
always safe to delete the entire directory and start over, though it will require internet
access and it may take a while.
Test files that you format are published to
build/actual and the images, CSS, and JavaScript resources
are copied under there so that everything will look right in the
browser. For security reasons, some JavaScript features may not work
if you are looking at the documents from the filesystem. You can work
around this by pointing a local web server at the build directory.
The built stylesheets are in build/xslt. You can run
them directly from there.
6.3. Build tasks
The build system is Gradle. Gradle’s
processing model operates in several phases, this allows an initial
configuration phase to construct build targets (called tasks)
dynamically. The DocBook xslTNG Stylesheets
build script uses this facility quite a bit.
In the discussion that follows, testdoc is the
base name of a test document, that is, one of the example files from the
src/test/resources/xml directory. For example, one of the test documents
is src/test/resources/xml/article.001.xml. In the build
targets that would be the “testdoc” article.001.
In an analogous way, “testset” is the root name of an XSpec test file in
src/test/xspec.
The most important tasks are:
	makeXslt
	This tasks “compiles” the stylesheets into build/xslt.

	report
	This task runs all of the tests and generates a unified report in
build/report. This is the default task.

	test
	Runs the test suite against the stylesheets.

	jar
	Compiles the extension functions and creates the jar file in
build/libs.

	dist
	Builds an archive in build/distributions suitable for distribution.

	guide
	Builds the reference guide.

	website
	Builds the website.

	explorer
	Generates the XSLT Explorer
report for the stylesheets in
build/explorer.

	helloWorld
	A smoke test target. It just prints a message, but doing so will exercise
a bunch of the build machinery in Gradle.

6.4. Testing tasks
The way tests are managed was completely refactored in version 2.0.13. The new
system is largely automatic.
	Create a new test document in src/test/resources/xml. For this
example, we’ll create para.003.xml, an example of a sidebar
in a para.

	Use the build target para.003.html to format the document.
This build target (and several others) exist automatically because the source file has
been created.

	Inspect the results (in build/actual/para.003.html) and adjust
the stylesheets until you are satisfied that the results are correct. Each time you make a
stylesheet change, you can re-run the para.003.html target to
rebuild the output.

	When you are satisified, run param.003.expected to
update the expected results.

	Run the report target to make sure no other tests have broken
as a result of your changes.

More generally, the following targets exist for any source document in
src/test/resources/xml:
	testdoc.html
	Formats testdoc into HTML and stores the result
in build/actual where it can be viewed in the browser with the appropriate
CSS, JavaScript, images, etc.

	testdoc.expected
	Formats testdoc into HTML and stores the result
in src/test/resources/expected. You should only run this
task when you’ve made a change and determined that the new results are correct and should
replace the previously expected results.

	testdoc.pdf.html
	Formats testdoc into HTML suitable
for paged media and stores the result in build/actual.

	testdoc.pdf
	The .pdf target will generate the
.pdf.html output and then attempt to transform it into PDF
with either AntennaHouse or PrinceXML. Additional configuration may be
necessary to get this to work.

	testdoc.chunk
	Formats testdoc into HTML with chunking turned
on. The result is stored in index.html and other files
in build/actual. No attempt is made to avoid having
the output files from different documents overwrite each other. At the moment,
none of the automated tests create chunked output.

	testset.xspec
	Runs the testset set of XSpec tests.
The test sets that are available are the sets constructed from build environments and
the sets created by hand (in src/test/xspec).a

6.5. Running XSpec
In order to get consistent results across different runs and in different
environments, the XSpec tests run a driver stylesheet, xspec-driver.xsl.

Note also that the XSpec shell script is modified by the stylesheets.
Appendix A. Changes in version 2.1.0
Version 2.x of the DocBook xslTNG
Stylesheets include some substantial changes from version
1.x. If you use the stylesheets “out of the box” without any
customization, you should have no trouble updating from version 1.x to
version 2.1.0 (or later), but there will be differences in the HTML
produced. If you have customization layers for 1.x, you may need to
change them in order to get the results you expect from 2.x.
The most significant rewrite, and the change that actually
motivated the decision to adopt some backwards incompatible changes,
is in the area of localization. Version 1.x of the
xslTNG stylesheets attempted to simplify (from
the preceding XSLT 2.0 stylesheets) how generated text was
constructed. The model adopted simply didn’t work for some languages.
Trying to adapt the model to support these languages was going to
result in something even more complicated than
what had worked before, so the model has largely been reverted to what
it was before.
The format of the localization data and the way that it’s used
are the subject of Chapter 4, Localization. In broad terms, the new
system should produce “the same results” as the old system for an
equivalent localization, but there may be small changes in the way
lists of titles and cross references are formatted.
The major changes are:
	Completely reworked how localization is handled. See
Chapter 4, Localization. The
localization file format has changed. Localization files are no longer
simply transformed from the XSLT 1.0 stylesheet format.

	Completely reworked how numbering of elements is performed. See
Section 3.5, “Controlling numeration”. It’s a bit more complicated now, but it’s also
more flexible and better tested. The default numeration should be the same
as before, although a few small changes may appear in places where (I think)
the previous numeration was wrong.

	Completely refactored the way that media objects are located
during the transformation and how the URIs for them are generated in
the output. It is now possible to store the media objects in a location
independent of the source files. Four separate source arrangements are represented
in the test suite and each can be processed to produce several different outputs;
see the all_mo_tests build target and its dependencies.

	Refactored the templates for processing media objects to improve support for
accessibility metadata and formatting copyright statements, legal notices, etc.
See m:mediaobject-start and m:mediaobject-end.

	Fixed the bug where attributes on image, video, audio, and text objects
in mediaobject and inlinemediaobject were not being preserved
in the output. In particular, this meant that role
attributes on those objects were not reflected in the HTML
class attribute.

	Reworked audio and video fallback. Placing an HTML prose description
in the video tag is not the correct approach in modern browsers. That prose is only
rendered by browsers that don’t understand the
video tag at all.
Apparently, it has to be
handled by JavaScript. There’s now a $fallback-js
parameter.

	Support media objects that have no media (e.g., a media object that contains
only inline text objects).

	Implemented an
on-page table of contents feature.

	Switched to
section elements
(instead of div elements)
for sections inside of refentry and a number of other places.
This supports the new
on-page table of contents feature and
should have been done when the rest of the sectioning elements
were converted.

	Reworked ToC handling. Added $auto-toc parameter.
The placement of generated lists-of-titles can now be controlled with an
empty toc element (or db-toc processing
instruction).

	Added support for creating ToCs by hand. (Former handling for
tocdiv and tocentry was just broken.)

	Placement of table titles, before or after the table, is now
set with $formal-object-title-placement. For backwards
compatibility, it defaults to ‘before’ for tables. Within a
formalgroup, title placement is controlled by
$formalgroup-nested-object-title-placement. In a related way,
the placement of media
object details can be set with $mediaobject-details-placement.

	Labels for formal objects may be different, but I think the previous
formatting was actually in error.

	Changed $mediaobject-accessibility and
$table-accessibility parameters into space-separated lists of strings.

	The parameters for the t:top-nav and
t:bottom-nav templates have changed. They are now always
called, even when chunking is not being performed. The new
$chunk parameter indicates whether or not a chunk is being formatted.

	Moved the
footer element from
just after
main to just inside it.
This simplifies and improves CSS rendering and is arguably more correct.

	Added an $unwrap-paragraphs parameter. If this
parameter is true, a single DocBook paragraph that contains
block elements (for example, tables or figures) will be rendered as several HTML paragraphs
with blocks between them. HTML doesn’t allow blocks inside paragraphs.

	Made including the docbook-print.css file conditional
on producing print output. Modern browsers attempt to parse the file, even when
the link specifies that it’s for print media, and produce a large number of
spurious error messages.

	Deprecated the m:html-body-script mode.
Changed the way the standard scripts are included; instead of putting them
at the end of the
body element, they’re
placed in the
head but explicitly marked
deferred.

	In some contexts, for example callouts, labels are now used for the
links instead of titles.

	Removed up-arrow from the keys that $chunk-nav responds
to. The up-arrow key is used by browser to move up the page and chunk navigation was
interfering with that behavior. The U key will still go “up” in
chunk navigation.

	Reworked the persistent
ToC. It can now store the ToC in a separate file. Improved the
error messages when the persistent ToC is unavailable.

	Changed ext:cwd() so that it always returns an absolute URI.
This fixes a bug in chunk output base URI handling. Tidied up some code.

	Process unexected elements in titlepage templates in the normal way; removed
the warning message associated with them. Add it back by putting
templates in $debug.

	Improved presentation of multiple keycap elements in a
keycombo.

	Added table-of-contents to the linear flow of EPUBs. This fixes an
epubcheck 3.3 error. Fixed the CSS for the ToC.

	Added support for ISO 690 bibliographies via a
$bibliography-style parameter.

	Added a $message-level parameter to support suppressing
some informational messages.

	Removed db-footnote attributes from the output. Technically, attribute
names that contain a hyphen are HTML5 extension attributes, but sometimes they make validation
more difficult. Some extension attributes remain, because they’re used by JavaScript in
the presentation for example, but db-footnote isn’t used that way.

	Fixed bug where authorgroup wasn’t being processed in
biblioentry.

	Fixed a bug where orderedlist numeration was not handled
correctly in cross-references to list items.

	Fixed incorrect URIs for SVG draft overlay in print CSS.

	Fixed a bug where the catalog.xml file in the
jar file was not at a location where the XML Resolver would find it.

	Updated the build system to use Pygments version 2.14.0. This effects the markup
produced in some syntax highlighted listings. (You’re free to use any version of Pygments
that’s convenient; this is just about conformance with the expected test results.)

	The way unit tests are managed has been completely rewritten.
See Section 6.4, “Testing tasks”.

Glossary
	Clark name
	A Clark name is a way of unambiguously representing a qualified
name (see XML) as a string. It consists of the
namespace name in curly braces followed immediately by the local name.
For example, the Clark name for the DocBook para element
is: “{http://docbook.org/ns/docbook}para”.

	hamburger menu
	The “hamburger menu” or
“hamburger
button” is the name for the “☰” icon often used to indicate a menu of choices.

	intrinsic size
	The intrinsic size of an object is it’s actual size, measured in absolute
units, usually pixels. The stylesheets rely on extension functions to obtain
the intrinsic size of objects; if the extension functions aren’t available or the
image format is not recognized, no intrinsic size will be known.

	is true
	XPath defines a boolean type, xs:boolean, that is either
true or false. But for the purpose of passing parameters to the stylesheet
at runtime, whether it’s from the command line, from a configuration file, or
through some other means, it’s often more convenient to pass string values.
This saves the user from having to use whatever extra syntactic mechanisms
would be required to identify the type of the variable.
To this end, many “boolean” parameters are actually strings. A string
value is true if it consists of one of the strings “true”,
“yes”, or “1”.

	object
	In this guide, the term “object” is used to refer generally to
any image, video, or audio media element. They have a width and a height but no
useful internal structure from the perspective of the stylesheets.

	pseudo-attribute
	Processing instructions (see XML) have no
internal structure. The stylesheets interrogate the
db processing instruction to determine formatting properties
for a number of different elements.
In order to make it easy to consistently specify different properties,
the value of the processing instruction is parsed as if it contained
attributes. These pseudo-attributes must consist of
a name, followed by “=”, followed by a quoted string.

References
[AntennaHouse] AH Formatter. Version 7.0.3.

[ISO 8601] ISO 8601-1:2019
Date and time — Representations for information interchange — Part 1:
Basic rules.
ISO (International Organization for Standardization).
2019-02.
[CSS]
What Is CSS?.
A family of standards developed by the W3C.
[TR
9901:1999] XML
Exchange Table Model Document Type
Definition. Organization for the Advancement of Structured
Information Standards (OASIS) Technical Memorandum TR 9901:1999.
Tables Technical Committee. Norman Walsh, editor.
[TR
9502:1995] CALS
Table Model Document Type Definition.
SGML Open Technical Memorandum TM 9502:1995.
Table Interchange Subcommittee. Harvey Bingham, editor.

[Gradle] Gradle.

[RFC 5147] URI Fragment Identifiers
for the text/plain Media Type. E. Wilde and M. Duerst,
editors. Internet Engineering Task Force. 2008.

[MathJax] MathJax.

[OldMeasure] The
Old Measure: An Inquiry Into the Origins of the U.S. Customary System of
Weights and Measures. 2010. Jon Bosak.

[Prince] Prince.
Version 13.5.
[Transclusion] DocBook
Transclusion. 2015. Jirka Koskek.

[Names] Falsehoods Programmers Believe About Names. 2010. Patrick McKenzie.

[XML] Tim Bray,
Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler, editors.
Extensible Markup
Language (XML) 1.0 Fifth Edition.
World Wide Web Consortium, 2008.

[XInclude] Jonathan Marsh,
David Orchard, and Daniel Veillard, editors.
XML Inclusions
(XInclude) Version 1.0 (Second Edition).
World Wide Web Consortium, 2006.

[Pygments] Pygments:
Python Syntax Highlighter. Version 2.6.1.
[highlight.js] highlight.js.
Version 10.1.2.
[Prism] Prism.
Version 1.20.0.
[metadata-extractor] metadata-extractor.
Version 2.14.0.
[search] Searching
text/plain documents with a fragid.
[XSLT 1.0] XSL Transformations (XSLT)
Version 1.0. James Clark, editor.
W3C Recommendation. 16 November 1999.
[XSLT 2.0] XSL Transformations (XSLT)
Version 2.0. Michael Kay, editor.
W3C Recommendation. 23 January 2007.
[XSLT 3.0] XSL Transformations (XSLT)
Version 3.0. Michael Kay, editor.
W3C Recommendation. 8 June 2017.
[XSL FO] Extensible Stylesheet
Language (XSL) Version 1.1. Anders Berglund, Editor.
W3C Recommendation. 5 December 2006.

Acknowledgements

I’d like to thank The Academy, the…no, wrong event.

DocBook has benefited immeasurably by the time and energy that
innumerable people have poured into it. I thank them all.

This project has benefited from the generous support of
Michael Kay and Saxonica for Saxon EE and
Micheal Miller and Antenna House for Antenna House Formatter.

Bethan Tovey-Walsh designed the lovely xslTNG logo.

Index
D
	db processing instruction, 1

P
	param	resource-base-uri, 1
	chunk, 1
	chunk-output-base-uri, 1
	chunk-include, 1, 1, 2
	chunk-exclude, 1, 1, 2
	persistent-toc, 1, 1
	chunk-nav, 1, 1, 1
	profile-os, 1, 1
	profile-arch, 1
	profile-audience, 1
	profile-condition, 1
	profile-conformance, 1
	profile-lang, 1
	profile-outputformat, 1
	profile-revision, 1
	profile-revisionflag, 1
	profile-role, 1
	profile-security, 1
	profile-userlevel, 1
	profile-vendor, 1
	profile-wordsize, 1
	profile-separator, 1, 2
	dynamic-profiles, 1
	verbatim-syntax-highlighter, 1
	persistent-toc-css, 1, 1
	persistent-toc-search, 1
	persistent-toc-filename, 1, 2, 3
	pagetoc-elements, 1
	pagetoc-dynamic, 1
	pagetoc-js, 1
	verbatim-syntax-highlight-css, 1
	use-docbook-css, 1
	user-css-links, 1
	sets-number-from, 1
	books-number-from, 1
	divisions-number-from, 1
	components-number-from, 1
	sections-number-from, 1
	formal-objects-number-from, 1
	sets-inherit-from, 1
	books-inherit-from, 1
	divisions-inherit-from, 1
	components-inherit-from, 1
	sections-inherit-from, 1
	formal-objects-inherit-from, 1
	division-numbers, 1
	component-numbers, 1
	section-numbers, 1
	nominal-page-width, 1
	pixels-per-inch, 1
	verbatim-number-separator, 1
	mediaobject-input-base-uri, 1, 1, 2, 3, 4
	mediaobject-output-base-uri, 1, 1, 2
	mediaobject-exclude-extensions, 1
	mediaobject-output-paths, 1
	annotation-placement, 1
	relax-ng-grammar, 1
	oxy-markup, 1
	transform-original, 1
	transform-before, 1
	transform-after, 1
	fallback-js, 1
	auto-toc, 1
	formal-object-title-placement, 1
	formalgroup-nested-object-title-placement, 1
	mediaobject-details-placement, 1
	mediaobject-accessibility, 1
	table-accessibility, 1
	unwrap-paragraphs, 1
	debug, 1
	bibliography-style, 1
	message-level, 1

V
	variable	v:localization-base-uri, 1
	v:custom-localizations, 1
	v:user-title-groups, 1, 1, 2
	v:user-xref-groups, 1, 1
	v:unit-scale, 1
	v:standard-transforms, 1
	v:transform-after, 1

Index by module
Many modules define related functions, templates, or variables.
VERSION.xsl
$v:VERSION, $v:VERSION-ID
highlight.xsl
, f:syntax-highlight(), f:syntax-highlight(), f:syntax-highlight()
main.xsl
m:docbook, $output-media
modules/admonitions.xsl
m:docbook
modules/annotations.xsl
m:annotation-content, m:docbook
modules/attributes.xsl
m:attributes, m:docbook
modules/biblio690.xsl
m:biblio690,
modules/bibliography.xsl
m:biblioentry, m:bibliomixed, m:docbook
modules/blocks.xsl
m:docbook, m:revhistory-list, m:revhistory-table, m:toc
modules/chunk-cleanup.xsl
t:bottom-nav, m:chunk-cleanup, t:chunk-footnotes, m:chunk-title, f:chunk-title(), , m:footnote-number, , m:mediaobject-output-adjust, t:top-nav
modules/chunk-output.xsl
m:chunk-output,
modules/chunk.xsl
f:chunk(), m:chunk-filename, f:chunk-filename()
modules/components.xsl
m:docbook
modules/divisions.xsl
m:docbook
modules/errors.xsl
$dbe:DYNAMIC-PROFILE-EVAL-ERROR, $dbe:DYNAMIC-PROFILE-SYNTAX-ERROR, $dbe:INTERNAL-HIGHLIGHT-ERROR, $dbe:INTERNAL-RENUMBER-ERROR, $dbe:INVALID-AREAREFS, $dbe:INVALID-CALS, $dbe:INVALID-CONSTRAINT, $dbe:INVALID-DYNAMIC-PROFILE-ERROR, $dbe:INVALID-INJECT, $dbe:INVALID-NAME-STYLE, $dbe:INVALID-PRODUCTIONRECAP, $dbe:INVALID-RESULTS-REQUESTED, $dbe:INVALID-TEMPLATE, $dbe:INVALID-TRANSFORM
modules/footnotes.xsl
m:docbook, , m:footnote-number, m:footnotes, t:table-footnotes
modules/functions.xsl
f:attributes(), f:attributes(), f:date-format(), f:generate-id(), f:generate-id(), f:gentext-letters(), f:gentext-letters-for-language(), f:href(), f:id(), f:is-true(), f:l10n-language(), f:label-separator(), f:orderedlist-item-number(), f:orderedlist-item-numeration(), f:orderedlist-startingnumber(), f:pi(), f:pi(), f:pi-attributes(), f:refsection(), f:relative-path(), f:section(), f:section-depth(), f:spaces(), f:step-number(), f:step-numeration(), f:target(), f:tokenize-on-char(), f:unique-id(), f:uri-scheme()
modules/gentext.xsl
m:gentext, f:in-scope-language(), f:languages(),
modules/glossary.xsl
m:docbook
modules/head.xsl
m:html-body-script, m:html-head, m:html-head-last, , m:html-head-links, , , m:html-head-script
modules/index.xsl
m:docbook, t:generate-index, m:index-div, m:index-primary, m:index-secondary, m:index-see, m:index-seealso, m:index-tertiary, t:index-zone-reference,
modules/info.xsl
m:copyright-years, m:docbook, t:person-name, t:person-name-family-given, t:person-name-first-last, t:person-name-last-first, t:person-name-list, m:to-uppercase
modules/inlines.xsl
m:docbook, t:inline
modules/l10n.xsl
m:docbook, m:gentext-list, f:l10n-token(), f:l10n-token(),
modules/links.xsl
m:docbook, m:link
modules/lists.xsl
m:callout-link, m:docbook, m:seglist-table, m:segtitle-in-seg
modules/msgset.xsl
m:docbook
modules/numbers.xsl

modules/objects.xsl
f:css-length(), f:css-property(), m:details, m:docbook, , m:imagemap, f:mediaobject-amend-uri(), m:mediaobject-end, t:mediaobject-img, m:mediaobject-info, f:mediaobject-input-base-uri(), m:mediaobject-start, f:mediaobject-type(), m:mediaobject-uris, f:mediaobject-viewport(), f:object-align(), f:object-contentheight(), f:object-contentwidth(), f:object-height(), f:object-properties(), f:object-properties(), f:object-scale(), f:object-scalefit(), f:object-valign(), f:object-width()
modules/programming.xsl
m:ansi, m:ansi-table, m:docbook, m:kr, m:kr-args, m:kr-table, m:kr-table-args, m:production-number, m:synopfragment-bug, m:synopsis
modules/publishers.xsl
m:docbook
modules/refentry.xsl
m:docbook
modules/sections.xsl
$v:bridgehead-map, m:docbook
modules/tablecals.xsl
f:cals-colsep(), f:cals-rowsep(), m:docbook
modules/tablehtml.xsl
m:docbook, m:htmltable
modules/templates.xsl
t:biblioentry, , , m:docbook, , m:generate-titlepage, f:template(), $v:templates, $v:titlepage-default
modules/titlepage.xsl
m:titlepage
modules/titles.xsl
, m:docbook, , m:headline, m:headline-label, m:headline-number, , m:headline-title, , m:title, $v:title-groups, $v:user-title-groups
modules/toc.xsl
m:docbook, m:list-of-equations, m:list-of-examples, m:list-of-figures, m:list-of-procedures, m:list-of-tables, m:list-of-titles, m:persistent-toc, m:toc, m:toc-entry, m:toc-nested
modules/unhandled.xsl
m:docbook
modules/units.xsl
f:absolute-length(), f:empty-length(), f:equal-lengths(), f:is-empty-length(), f:length-string(), f:length-units(), f:make-length(), f:make-length(), f:make-length(), f:parse-length(), f:relative-length(), $v:unit-scale
modules/variable.xsl
$v:admonition-icons, $v:annotation-close, $v:arg-choice-def-close-str, $v:arg-choice-def-open-str, $v:arg-choice-opt-close-str, $v:arg-choice-opt-open-str, $v:arg-choice-plain-close-str, $v:arg-choice-plain-open-str, $v:arg-choice-req-close-str, $v:arg-choice-req-open-str, $v:arg-or-sep, $v:arg-rep-def-str, $v:arg-rep-norepeat-str, $v:arg-rep-repeat-str, $v:as-json, $v:as-xml, $v:chunk, $v:chunk-filter-namespaces, $v:chunk-renumber-footnotes, $v:custom-localizations, $v:debug, $v:formal-object-title-placement, $v:formalgroup-nested-object-title-placement, $v:highlight-js-head-elements, $v:image-nominal-height, $v:image-nominal-width, $v:localization-base-uri, $v:media-type-default, $v:media-type-map, $v:mediaobject-details-placement, $v:mediaobject-exclude-extensions, $v:mediaobject-output-base-uri, $v:nominal-page-width, $v:olink-databases, $v:personal-name-styles, $v:prism-js-head-elements, $v:theme-list, $v:toc-close, $v:toc-open, $v:verbatim-callouts, $v:verbatim-line-style, $v:verbatim-number-every-nth, $v:verbatim-number-first-line, $v:verbatim-number-minlines, $v:verbatim-numbered-elements, $v:verbatim-plain-style, $v:verbatim-space, $v:verbatim-syntax-highlight-languages, $v:verbatim-syntax-highlight-options, $v:verbatim-syntax-highlight-pygments-options, $v:verbatim-table-style
modules/verbatim.xsl
m:callout-bug, , m:docbook, , m:highlight-options, f:highlight-verbatim(), , $v:invisible-characters, m:pygments-options, f:verbatim-highlight(), f:verbatim-numbered(), $v:verbatim-properties, f:verbatim-style(), f:verbatim-trim-trailing()
modules/xform-locale.xsl
,
modules/xlink.xsl
m:docbook, , , t:xlink, , f:xlink-style(), , f:xpointer-idref()
modules/xref.xsl
m:crossref, m:crossref-label, m:crossref-number, m:crossref-number-separator, m:crossref-suffix, m:crossref-title, $v:user-xref-groups, $v:xref-groups
param.xsl
$additional-languages, $align-char-default, $align-char-pad, $align-char-width, $allow-eval, $annotate-toc, $annotation-collection, $annotation-mark, $annotation-placement, $annotation-style, $annotations-js, $auto-toc, $bibliography-collection, $bibliography-style, $books-inherit-from, $books-number-from, $callout-default-column, $callout-unicode-start, $chunk, $chunk-exclude, $chunk-include, $chunk-nav, $chunk-nav-js, $chunk-output-base-uri, $chunk-renumber-footnotes, $chunk-section-depth, $classsynopsis-indent, $component-numbers, $component-numbers-inherit, $components-inherit-from, $components-number-from, $control-js, $copyright-collapse-years, $copyright-year-range-separator, $copyright-year-separator, $date-date-format, $date-dateTime-format, $dc-metadata, $debug, $default-float-style, $default-language, $default-length-magnitude, $default-length-unit, $default-theme, $division-numbers, $division-numbers-inherit, $divisions-inherit-from, $divisions-number-from, $docbook-transclusion, $dynamic-profile-error, $dynamic-profile-variables, $dynamic-profiles, $experimental-pmuj, $fallback-js, $footnote-numeration, $formal-object-title-placement, $formal-objects-inherit-from, $formal-objects-number-from, $formalgroup-nested-object-title-placement, $funcsynopsis-default-style, $funcsynopsis-table-threshold, $funcsynopsis-trailing-punctuation, $generate-html-page, $generate-index, $generate-nested-toc, $generate-toc, $generate-trivial-toc, $generated-id-root, $generated-id-sep, $generator-metadata, $gentext-language, $glossary-collection, $glossary-sort-entries, $html-extension, $image-ignore-scaling, $image-nominal-height, $image-nominal-width, $image-property-warning, $index-on-role, $index-on-type, $index-show-entries, $indexed-section-groups, $lists-of-equations, $lists-of-examples, $lists-of-figures, $lists-of-procedures, $lists-of-tables, $local-conventions, $mathml-js, $mediaobject-accessibility, $mediaobject-details-placement, $mediaobject-exclude-extensions, $mediaobject-grouped-by-type, $mediaobject-input-base-uri, $mediaobject-output-base-uri, $mediaobject-output-paths, $mediaobject-video-element, $message-level, $nominal-page-width, $number-single-appendix, $olink-databases, $orderedlist-item-numeration, $othername-in-middle, $output-media, $oxy-markup, $page-style, $pagetoc-dynamic, $pagetoc-elements, $pagetoc-js, $paper-size, $persistent-toc, $persistent-toc-css, $persistent-toc-filename, $persistent-toc-js, $persistent-toc-search, $personal-name-style, $pixels-per-inch, $procedure-step-numeration, $productionset-lhs-rhs-separator, $profile-arch, $profile-audience, $profile-condition, $profile-conformance, $profile-lang, $profile-os, $profile-outputformat, $profile-revision, $profile-revisionflag, $profile-role, $profile-security, $profile-separator, $profile-userlevel, $profile-vendor, $profile-wordsize, $qandadiv-default-toc, $qandaset-default-label, $qandaset-default-toc, $refentry-generate-name, $refentry-generate-title, $relax-ng-grammar, $resource-base-uri, $revhistory-style, $section-numbers, $section-numbers-inherit, $section-toc-depth, $sections-inherit-from, $sections-number-from, $segmentedlist-style, $sets-inherit-from, $sets-number-from, $show-remarks, $sidebar-as-aside, $sort-collation, $table-accessibility, $table-footnote-numeration, $theme-picker, $transclusion-id-fixup, $transclusion-link-scope, $transclusion-prefix-separator, $transclusion-suffix, $transform-after, $transform-before, $transform-original, $unwrap-paragraphs, $use-docbook-css, $use-minified-css, $user-css-links, $variablelist-termlength-threshold, $verbatim-callouts, $verbatim-line-style, $verbatim-number-every-nth, $verbatim-number-first-line, $verbatim-number-minlines, $verbatim-number-separator, $verbatim-numbered-elements, $verbatim-plain-style, $verbatim-space, $verbatim-style-default, $verbatim-syntax-highlight-css, $verbatim-syntax-highlight-languages, $verbatim-syntax-highlighter, $verbatim-table-style, $verbatim-trim-trailing-blank-lines, $warn-about-missing-localizations, $xlink-arclist-after, $xlink-arclist-before, $xlink-arclist-sep, $xlink-arclist-titlesep, $xlink-icon-closed, $xlink-icon-open, $xlink-js, $xlink-style, $xlink-style-default, $xspec

Part II. Reference
Table of Contents
	I. Parameter reference	$additional-languages
	$align-char-default, $align-char-pad, $align-char-width
	$allow-eval
	$annotate-toc
	$annotation-collection
	$annotation-mark
	$annotation-placement
	$annotation-style
	$annotations-js
	$auto-toc
	$bibliography-collection
	$bibliography-style
	$books-inherit-from
	$books-number-from
	$callout-default-column
	$callout-unicode-start
	$chunk
	$chunk-exclude
	$chunk-include
	$chunk-nav
	$chunk-nav-js
	$chunk-output-base-uri
	$chunk-renumber-footnotes
	$chunk-section-depth
	$classsynopsis-indent
	$component-numbers
	$component-numbers-inherit
	$components-inherit-from
	$components-number-from
	$control-js
	$copyright-collapse-years
	$copyright-year-range-separator
	$copyright-year-separator
	$date-date-format, $date-dateTime-format
	$dc-metadata
	$debug
	$default-float-style
	$default-language
	$default-length-magnitude, $default-length-unit
	$default-theme
	$division-numbers
	$division-numbers-inherit
	$divisions-inherit-from
	$divisions-number-from
	$docbook-transclusion
	$dynamic-profile-error
	$dynamic-profile-variables
	$dynamic-profiles
	$experimental-pmuj
	$fallback-js
	$footnote-numeration
	$formal-object-title-placement
	$formal-objects-inherit-from
	$formal-objects-number-from
	$formalgroup-nested-object-title-placement
	$funcsynopsis-default-style
	$funcsynopsis-table-threshold
	$funcsynopsis-trailing-punctuation
	$generate-html-page
	$generate-index
	$generate-nested-toc
	$generate-toc
	$generate-trivial-toc
	$generated-id-root
	$generated-id-sep
	$generator-metadata
	$gentext-language
	$glossary-collection
	$glossary-sort-entries
	$html-extension
	$image-ignore-scaling
	$image-nominal-height
	$image-nominal-width
	$image-property-warning
	$index-on-role, $index-on-type
	$index-show-entries
	$indexed-section-groups
	$lists-of-equations
	$lists-of-examples
	$lists-of-figures
	$lists-of-procedures
	$lists-of-tables
	$local-conventions
	$mathml-js
	$mediaobject-accessibility
	$mediaobject-details-placement
	$mediaobject-exclude-extensions
	$mediaobject-grouped-by-type
	$mediaobject-input-base-uri
	$mediaobject-output-base-uri
	$mediaobject-output-paths
	$mediaobject-video-element
	$message-level
	$nominal-page-width
	$number-single-appendix
	$olink-databases
	$orderedlist-item-numeration
	$othername-in-middle
	$output-media
	$oxy-markup
	$page-style
	$pagetoc-dynamic
	$pagetoc-elements
	$pagetoc-js
	$paper-size
	$persistent-toc
	$persistent-toc-css
	$persistent-toc-filename
	$persistent-toc-js
	$persistent-toc-search
	$personal-name-style
	$pixels-per-inch
	$procedure-step-numeration
	$productionset-lhs-rhs-separator
	$profile-arch
	$profile-audience
	$profile-condition
	$profile-conformance
	$profile-lang
	$profile-os
	$profile-outputformat
	$profile-revision
	$profile-revisionflag
	$profile-role
	$profile-security
	$profile-separator
	$profile-userlevel
	$profile-vendor
	$profile-wordsize
	$qandadiv-default-toc
	$qandaset-default-label
	$qandaset-default-toc
	$refentry-generate-name
	$refentry-generate-title
	$relax-ng-grammar
	$resource-base-uri
	$revhistory-style
	$section-numbers
	$section-numbers-inherit
	$section-toc-depth
	$sections-inherit-from
	$sections-number-from
	$segmentedlist-style
	$sets-inherit-from
	$sets-number-from
	$show-remarks
	$sidebar-as-aside
	$sort-collation
	$table-accessibility
	$table-footnote-numeration
	$theme-picker
	$transclusion-id-fixup
	$transclusion-link-scope
	$transclusion-prefix-separator
	$transclusion-suffix
	$transform-after
	$transform-before
	$transform-original
	$unwrap-paragraphs
	$use-docbook-css
	$use-minified-css
	$user-css-links
	$variablelist-termlength-threshold
	$verbatim-callouts
	$verbatim-line-style
	$verbatim-number-every-nth
	$verbatim-number-first-line
	$verbatim-number-minlines
	$verbatim-number-separator
	$verbatim-numbered-elements
	$verbatim-plain-style
	$verbatim-space
	$verbatim-style-default
	$verbatim-syntax-highlight-css
	$verbatim-syntax-highlight-languages
	$verbatim-syntax-highlighter
	$verbatim-table-style
	$verbatim-trim-trailing-blank-lines
	$warn-about-missing-localizations
	$xlink-arclist-after
	$xlink-arclist-before
	$xlink-arclist-sep
	$xlink-arclist-titlesep
	$xlink-icon-closed
	$xlink-icon-open
	$xlink-js
	$xlink-style
	$xlink-style-default
	$xspec

	II. Variables reference	$arg-choice-def-close-str, …
	$err:DYNAMIC-PROFILE-EVAL-ERROR
	$err:DYNAMIC-PROFILE-SYNTAX-ERROR
	$err:INTERNAL-HIGHLIGHT-ERROR
	$err:INTERNAL-RENUMBER-ERROR
	$err:INVALID-AREAREFS
	$err:INVALID-CALS
	$err:INVALID-CONSTRAINT
	$err:INVALID-DYNAMIC-PROFILE-ERROR
	$err:INVALID-INJECT
	$err:INVALID-NAME-STYLE
	$err:INVALID-PRODUCTIONRECAP
	$err:INVALID-RESULTS-REQUESTED
	$err:INVALID-TEMPLATE
	$err:INVALID-TRANSFORM
	$v:personal-name-styles
	$v:VERSION
	$v:VERSION-ID
	$v:admonition-icons
	$v:annotation-close
	$v:as-json
	$v:as-xml
	$v:bridgehead-map
	$v:chunk
	$v:chunk-filter-namespaces
	$v:chunk-renumber-footnotes
	$v:custom-localizations
	$v:debug
	$v:formal-object-title-placement
	$v:formalgroup-nested-object-title-placement
	$v:highlight-js-head-elements
	$v:image-nominal-height
	$v:image-nominal-width
	$v:invisible-characters
	$v:localization-base-uri
	$v:media-type-default
	$v:media-type-map
	$v:mediaobject-details-placement
	$v:mediaobject-exclude-extensions
	$v:mediaobject-input-base-uri
	$v:mediaobject-output-base-uri
	$v:nominal-page-width
	$v:olink-databases
	$v:prism-js-head-elements
	$v:standard-transforms
	$v:templates
	$v:theme-list
	$v:title-groups
	$v:title-properties
	$v:titlepage-default
	$v:toc-close
	$v:toc-open
	$v:unit-scale
	$v:user-title-groups
	$v:user-title-properties
	$v:user-xref-groups
	$v:user-xref-properties
	$v:verbatim-callouts
	$v:verbatim-line-style
	$v:verbatim-number-every-nth
	$v:verbatim-number-first-line
	$v:verbatim-number-minlines
	$v:verbatim-numbered-elements
	$v:verbatim-plain-style
	$v:verbatim-properties
	$v:verbatim-space
	$v:verbatim-syntax-highlight-languages
	$v:verbatim-syntax-highlight-options
	$v:verbatim-syntax-highlight-pygments-options
	$v:verbatim-table-style
	$v:xref-groups
	$v:xref-properties

	III. Function reference	ext:cwd
	ext:image-metadata
	ext:image-properties
	ext:pygmentize
	ext:pygmentize-available
	ext:validate-with-relax-ng
	ext:xinclude
	f:absolute-length
	f:attributes
	f:cals-colsep
	f:cals-rowsep
	f:check-gentext
	f:chunk
	f:chunk-filename
	f:chunk-title
	f:css-length
	f:css-property
	f:date-format
	f:empty-length
	f:equal-lengths
	f:generate-id
	f:gentext
	f:gentext-letters
	f:gentext-letters-for-language
	f:highlight-verbatim
	f:href
	f:id
	f:in-scope-language
	f:intra-number-separator
	f:is-empty-length
	f:is-true
	f:l10n-language
	f:l10n-token
	f:label-separator
	f:language
	f:languages
	f:length-string
	f:length-units
	f:locales
	f:make-length
	f:mediaobject-amend-uri
	f:mediaobject-input-base-uri
	f:mediaobject-type
	f:mediaobject-viewport
	f:number-separator
	f:object-align
	f:object-contentheight
	f:object-contentwidth
	f:object-height
	f:object-properties
	f:object-scale
	f:object-scalefit
	f:object-valign
	f:object-width
	f:orderedlist-item-number
	f:orderedlist-item-numeration
	f:orderedlist-startingnumber
	f:parse-length
	f:pi
	f:pi-attributes
	f:post-label-punctuation
	f:refsection
	f:relative-length
	f:relative-path
	f:section
	f:section-depth
	f:spaces
	f:step-number
	f:step-numeration
	f:syntax-highlight
	f:target
	f:template
	f:tokenize-on-char
	f:unique-id
	f:uri-scheme
	f:verbatim-highlight
	f:verbatim-numbered
	f:verbatim-style
	f:verbatim-trim-trailing
	f:xlink-style
	f:xpointer-idref

	IV. Template reference	t:audio-fallback
	t:biblioentry
	t:bottom-nav
	t:chunk-cleanup
	t:chunk-footnotes
	t:chunk-output
	t:docbook
	t:generate-index
	t:index-zone-reference
	t:inline
	t:mediaobject-img
	t:person-name
	t:person-name-family-given
	t:person-name-first-last
	t:person-name-last-first
	t:person-name-list
	t:table-footnotes
	t:top-nav
	t:video-fallback
	t:xlink

	V. Mode reference	m:annotation-content
	m:ansi
	m:ansi-table
	m:attributes
	m:biblio690
	m:biblioentry
	m:bibliomixed
	m:callout-bug
	m:callout-link
	m:chunk-cleanup
	m:chunk-filename
	m:chunk-output
	m:chunk-title
	m:chunk-write
	m:copyright-years
	m:crossref
	m:crossref-inherit-separator
	m:crossref-label
	m:crossref-label-separator
	m:crossref-number
	m:crossref-number-separator
	m:crossref-prefix
	m:crossref-suffix
	m:crossref-title
	m:details
	m:details-attribute
	m:docbook
	m:footnote-number
	m:footnotes
	m:generate-titlepage
	m:gentext
	m:gentext-list
	m:headline
	m:headline-label
	m:headline-label-separator
	m:headline-number
	m:headline-number-separator
	m:headline-prefix
	m:headline-suffix
	m:headline-title
	m:highlight-options
	m:html-body-script
	m:html-head
	m:html-head-last
	m:html-head-links
	m:html-head-script
	m:htmltable
	m:imagemap
	m:index-div
	m:index-primary
	m:index-secondary
	m:index-see
	m:index-seealso
	m:index-tertiary
	m:kr
	m:kr-args
	m:kr-table
	m:kr-table-args
	m:link
	m:list-of-equations
	m:list-of-examples
	m:list-of-figures
	m:list-of-procedures
	m:list-of-tables
	m:list-of-titles
	m:mediaobject-end
	m:mediaobject-info
	m:mediaobject-output-adjust
	m:mediaobject-start
	m:mediaobject-uris
	m:persistent-toc
	m:production-number
	m:pygments-options
	m:revhistory-list
	m:revhistory-table
	m:seglist-table
	m:segtitle-in-seg
	m:synopfragment-bug
	m:synopsis
	m:title
	m:titlepage
	m:to-uppercase
	m:toc
	m:toc-entry
	m:toc-nested

	VI. Processing instruction reference	DocBook-xslTNG-version
	current-dateTime
	db
	system-property

I. Parameter reference
Table of Contents
	$additional-languages
	$align-char-default, $align-char-pad, $align-char-width
	$allow-eval
	$annotate-toc
	$annotation-collection
	$annotation-mark
	$annotation-placement
	$annotation-style
	$annotations-js
	$auto-toc
	$bibliography-collection
	$bibliography-style
	$books-inherit-from
	$books-number-from
	$callout-default-column
	$callout-unicode-start
	$chunk
	$chunk-exclude
	$chunk-include
	$chunk-nav
	$chunk-nav-js
	$chunk-output-base-uri
	$chunk-renumber-footnotes
	$chunk-section-depth
	$classsynopsis-indent
	$component-numbers
	$component-numbers-inherit
	$components-inherit-from
	$components-number-from
	$control-js
	$copyright-collapse-years
	$copyright-year-range-separator
	$copyright-year-separator
	$date-date-format, $date-dateTime-format
	$dc-metadata
	$debug
	$default-float-style
	$default-language
	$default-length-magnitude, $default-length-unit
	$default-theme
	$division-numbers
	$division-numbers-inherit
	$divisions-inherit-from
	$divisions-number-from
	$docbook-transclusion
	$dynamic-profile-error
	$dynamic-profile-variables
	$dynamic-profiles
	$experimental-pmuj
	$fallback-js
	$footnote-numeration
	$formal-object-title-placement
	$formal-objects-inherit-from
	$formal-objects-number-from
	$formalgroup-nested-object-title-placement
	$funcsynopsis-default-style
	$funcsynopsis-table-threshold
	$funcsynopsis-trailing-punctuation
	$generate-html-page
	$generate-index
	$generate-nested-toc
	$generate-toc
	$generate-trivial-toc
	$generated-id-root
	$generated-id-sep
	$generator-metadata
	$gentext-language
	$glossary-collection
	$glossary-sort-entries
	$html-extension
	$image-ignore-scaling
	$image-nominal-height
	$image-nominal-width
	$image-property-warning
	$index-on-role, $index-on-type
	$index-show-entries
	$indexed-section-groups
	$lists-of-equations
	$lists-of-examples
	$lists-of-figures
	$lists-of-procedures
	$lists-of-tables
	$local-conventions
	$mathml-js
	$mediaobject-accessibility
	$mediaobject-details-placement
	$mediaobject-exclude-extensions
	$mediaobject-grouped-by-type
	$mediaobject-input-base-uri
	$mediaobject-output-base-uri
	$mediaobject-output-paths
	$mediaobject-video-element
	$message-level
	$nominal-page-width
	$number-single-appendix
	$olink-databases
	$orderedlist-item-numeration
	$othername-in-middle
	$output-media
	$oxy-markup
	$page-style
	$pagetoc-dynamic
	$pagetoc-elements
	$pagetoc-js
	$paper-size
	$persistent-toc
	$persistent-toc-css
	$persistent-toc-filename
	$persistent-toc-js
	$persistent-toc-search
	$personal-name-style
	$pixels-per-inch
	$procedure-step-numeration
	$productionset-lhs-rhs-separator
	$profile-arch
	$profile-audience
	$profile-condition
	$profile-conformance
	$profile-lang
	$profile-os
	$profile-outputformat
	$profile-revision
	$profile-revisionflag
	$profile-role
	$profile-security
	$profile-separator
	$profile-userlevel
	$profile-vendor
	$profile-wordsize
	$qandadiv-default-toc
	$qandaset-default-label
	$qandaset-default-toc
	$refentry-generate-name
	$refentry-generate-title
	$relax-ng-grammar
	$resource-base-uri
	$revhistory-style
	$section-numbers
	$section-numbers-inherit
	$section-toc-depth
	$sections-inherit-from
	$sections-number-from
	$segmentedlist-style
	$sets-inherit-from
	$sets-number-from
	$show-remarks
	$sidebar-as-aside
	$sort-collation
	$table-accessibility
	$table-footnote-numeration
	$theme-picker
	$transclusion-id-fixup
	$transclusion-link-scope
	$transclusion-prefix-separator
	$transclusion-suffix
	$transform-after
	$transform-before
	$transform-original
	$unwrap-paragraphs
	$use-docbook-css
	$use-minified-css
	$user-css-links
	$variablelist-termlength-threshold
	$verbatim-callouts
	$verbatim-line-style
	$verbatim-number-every-nth
	$verbatim-number-first-line
	$verbatim-number-minlines
	$verbatim-number-separator
	$verbatim-numbered-elements
	$verbatim-plain-style
	$verbatim-space
	$verbatim-style-default
	$verbatim-syntax-highlight-css
	$verbatim-syntax-highlight-languages
	$verbatim-syntax-highlighter
	$verbatim-table-style
	$verbatim-trim-trailing-blank-lines
	$warn-about-missing-localizations
	$xlink-arclist-after
	$xlink-arclist-before
	$xlink-arclist-sep
	$xlink-arclist-titlesep
	$xlink-icon-closed
	$xlink-icon-open
	$xlink-js
	$xlink-style
	$xlink-style-default
	$xspec

$additional-languages
$additional-languages — Additional localization languages (beyond the default language)

Parameter:
{}additional-languages

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$additional-languages := ()

Description

 If the stylesheets need to generate text (the names of labels
such as “Chapter”, for example), they attempt to do so in the same
language as the document. This is determined by finding the nearast
in-scope xml:lang attribute from the context where the
generated text is required.

 The stylesheets can generate text in more than 70 languages,
but very few documents use more than a few. To avoid the overhead of
loading a great many localizations that will never be used, the
stylesheets don’t load them all.

 The stylesheets always load the
$default-language and will load any additional
languages identified in $additional-languages,
a space separated list of language identifiers.

 If the $additional-languages is the
empty sequence, the stylesheets attempt to determine which languages
are used in the document and load the appropriate localizations.

$align-char-default, $align-char-pad, $align-char-width
$align-char-default, $align-char-pad, $align-char-width — Support “char” alignment on CALS table cells.

Parameter:
{}align-char-default

{}align-char-pad

{}align-char-width

Defined in:
param.xsl (3)

Used in:
param.xsl, modules/tablecals.xsl

Synopsis
 |$align-char-default as xs:string := '.'

 |$align-char-pad := ' '

 |$align-char-width := 2

Description

 CALS tables support “char” alignment on columns. The most common
use case for character alignment is to align a column of numbers on a
decimal point even when the number of characters to right or left of
the decimal point varies.

 Three parameters apply to character alignment:

 	
 $align-char-default

	Specifies the default alignment character.

	
 $align-char-pad

	Specifies the default padding character, usually an en space.

	
 $align-char-width

	Specifies the number of characters that follow the alignment
character.

 ⓘ
Notes
	The HTML table model doesn’t really support character alignment.
This feature pads each entry on the right as necessary to put the
alignment character in the same place. Naturally, this will only
produce the desired result if a monospace font is used in the
cell.
	If the alignment character appears more than once in the cell,
the cells are aligned around the last occurrence. The notion of “last”
and padding on the right or the left should be sensitive to the writing
direction, but it isn’t currently.

	Character alignment is ignored if a cell contains markup.

 Example 1, “An example of char alignment” shows an example of
character alignment on the “,” character.

 |<informaltable frame="all">
 | <tgroup cols="2" colsep="1" rowsep="1">
 | <colspec colnum="2" align="char" char=","/>
 | <tbody>
 | <row>
 | <entry>Row A</entry>
 | <entry>10000,01</entry>
 | </row>
 | <row>
 | <entry>Row B</entry>
 | <entry>10</entry>
 | </row>
 | <row>
 | <entry>Row C</entry>
 | <entry>-3,14</entry>
 | </row>
 | </tbody>
 | </tgroup>
 |</informaltable>

Example 1. An example of char alignment

 	Row A	10000,01
	Row B	10   
	Row C	-3,14

Example 2. Tabular rendering

 The alignment character can be specified on a per-column, per-table
basis with the char attribute on colspec.

 The alignment width and padding character can be specified on a
per-column, per-table basis with a
db
 processing instruction.

 If the settings apply to the whole table, the processing
instruction can be a child of tgroup, preceding any other
elements. If you want to specify different values for different
columns, the processing instruction must immediately follow the
colspec for the column.

 The align-char-width

pseudo-attribute controls the number of characters following the
alignment character. The align-char-pad

pseudo-attribute controls the character used for padding.

 A value that does not contain the alignment character is assumed
to be followed immediately by the alignment character. (In other
words, if you’re aligning on “.”, “10” is considered to be “10.”.)
If the pad character is a space*, then the pad
character will be used to pad the value. If the pad character isn’t a space,
the value will be padded with the alignment character followed by pad characters
as necessary.

*
Technically, is in the class of Unicode characters considered to be spaces,
one that matches \p{Zs}.

$allow-eval
$allow-eval — Process the eval processing instruction?

Parameter:
{}allow-eval

Defined in:
param.xsl

Used in:
param.xsl, modules/inlines.xsl

Synopsis
 |$allow-eval as xs:string := 'true'

Description

 If this parameter is true, XPath expressions contained in the
eval processing instruction will be evaluated,
otherwise the processing instruction is silently ignored.

 If the eval is performed, the result of the evaluation is
inserted into the formatted document.

$annotate-toc
$annotate-toc — Annotate the table-of-contents?

Parameter:
{}annotate-toc

Defined in:
param.xsl

Used in:
param.xsl, modules/toc.xsl

Synopsis
 |$annotate-toc := 'true'

Description

 If true, a table of contents containing refentry elements
will also include the refpurpose for each entry.

$annotation-collection
$annotation-collection — An external collection of annotations.

Parameter:
{}annotation-collection

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$annotation-collection as xs:string := ''

Description

 Because annotations can be applied by pointing from the
annotation to the element they annotate, they can be stored and
managed externally. If $annotation-collection
points to a collection of annotations, the stylesheets will add them
to the document before it is processed.

 To achieve this:

 	Create a collection of shared annotations and store them somewhere. The
stylesheets will copy only the top-level annotation elements
(/*/annotation). The
document element doesn’t matter.

	Use the annotates attribute on the annotations to
point at elements in the document you’re transforming.

Annotations can point in either direction, but you will get
ID/IDREF validation errors if you attempt to point from the document
into the annotation collection because the annotation collection won’t
be present when you validate. If your use case requires pointing in
that direction, you will have better luck with a pipeline that
combines the two documents before validating.

	Run your transformation with
$annotation-collection set to the URI of the
document that contains your collection of annotations.

 The stylesheets will apply annotations to the elements
identified. Extra annotations, annotations that don’t point to
elements that actually exist in the document being transformed, will
be ignored.

$annotation-mark
$annotation-mark — Identifying mark for annotations.

Parameter:
{}annotation-mark

Defined in:
param.xsl

Used in:
param.xsl, modules/annotations.xsl

Synopsis
 |<xsl:param name="annotation-mark">
 | [⌖]
 |</xsl:param>

Description

 When annotations are rendered, the
$annotation-mark is inserted at each location
where an annotation occurs.

 If JavaScript is used for annotations (see $annotation-style),
clicking on the mark will bring up the annotation; if JavaScript is not used, the marks
are numbered and the annotations appear as a form of footnote.

$annotation-placement
$annotation-placement — Determines where the annotation mark is placed.

Parameter:
{}annotation-placement

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$annotation-placement := 'after'

Description

 When annotations are rendered,
$annotation-placement determines where the
$annotation-mark is placed. If the value is after,
the mark or marks are placed at the very end of the element being annotated.
If the value is before, the marks are placed at the very beginning
of the element being annotated.

 Each individual annotation can determine its placement by placing before
or after in its role attribute.

$annotation-style
$annotation-style — Selects the annotation style.

Parameter:
{}annotation-style

Defined in:
param.xsl

Used in:
param.xsl, modules/chunk-cleanup.xsl

Synopsis
 |$annotation-style := 'javascript'

Description

 An annotation can be used to add annotations to
arbitrary elements. Annotations are formatted something like
footnotes, they appear at the bottom of the page and are linked from
the point of the annotation. There are two annotation styles,
“javascript” and “inline”.

 If the annotation style is “javascript”, a
script reference will be added. The script hides the annotations at the
bottom of the page and instead renders them as modal dialogs when the
marks are clicked. The presentation is accessible in the absence of
JavaScript.

 If the annotation style is “inline”, then the
script is not included and the default presentation is used. No other values
are supported at this time.

$annotations-js
$annotations-js — Script to support popup (JavaScript) annotations.

Parameter:
{}annotations-js

Defined in:
param.xsl

Used in:
main.xsl, param.xsl

Synopsis
 |$annotations-js := 'js/annotations.js'

Description

 If popup (JavaScript) annotations appear in the document, a link to
this script will be added to the document. This script must contain the JavaScript
necessary to support the popup annotations feature.

$auto-toc
$auto-toc — Automatically generate tables of contents.

Parameter:
{}auto-toc

Defined in:
param.xsl

Used in:
param.xsl, modules/toc.xsl

Since:
2.0.10

Synopsis
 |$auto-toc as xs:string := 'true'

Description

 If this parameter is true, then a table
of contents, or more generally, “lists of titles”, will be generated.
If it is not true, such lists will only appear where an explicit
toc element appears. An empty toc can be used to
identify the place where an automatically generated list should
appear. In either case, if the toc is not empty, then the
hand-authored list appears instead of an automatically generated one.

 Which elements will have an automatically generated list of titles
is determined by how elements are processed in the m:toc
mode.

$bibliography-collection
$bibliography-collection — An external collection of bibliography entries.

Parameter:
{}bibliography-collection

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$bibliography-collection as xs:string := ''

Description

 It’s often convenient to share a common bibliography
across many documents. If
$bibliography-collection points to a
bibliography, the stylesheets will automatically populate bibliography
entries in the document being transformed.

 To achieve this:

 	Create a shared bibliography and store it somewhere. Make sure that
each entry in your shared bibliography has a unique xml:id value.

	Run your
transformation with $bibliography-collection set
to the URI of that document.

	In the document you’re transforming, refer to the shared entries
with completely empty biblioentry or bibliomixed
elements that have the same xml:id as an entry in the
shared bibliography.

 The stylesheets will copy those entries into your document before processing it.

$bibliography-style
$bibliography-style — The bibliography style.

Parameter:
{}bibliography-style

Defined in:
param.xsl

Used in:
param.xsl, modules/bibliography.xsl, modules/attributes.xsl

Synopsis
 |$bibliography-style as xs:string := 'default'

Description

 Bibliographies are complicated and many different styles
exist. Creating properly formatted bibliographies from
raw
 bibliography entries is especially challenging.
(This parameter does not apply to formatting bibliomixed entries.)

 	
 default

	The default style. This is controlled by the biblioentry
template. See $v:templates.
All biblioentry elements will be processed in
m:biblioentry mode.

	
 iso690

	Attempts to implement ISO 690 bibliographic formatting.
All biblioentry elements will be processed in
m:biblio690 mode. This is adapted from the examples in
Bibliography according to ISO 690 and ISO 690-2 standards.

The default style specified by
$bibliography-style can be overridden on a
case-by-case basis with the
db
 processing instruction using the
bibliography-style
 pseudo-attribute. This must appear in the
bibliography or bibliolist that contains the entries.

$books-inherit-from
$books-inherit-from — Identifies what inherited numeration applies to books.

Parameter:
{}books-inherit-from

Defined in:
param.xsl

Used in:
param.xsl, modules/titles.xsl

Synopsis
 |$books-inherit-from as xs:string := ''

Description

 If book numbers inherit from their ancestors, these are the ancestors they
inherit from.

 See Section 3.5, “Controlling numeration”.

$books-number-from
$books-number-from — Identifies where book numeration begins.

Parameter:
{}books-number-from

Defined in:
param.xsl

Used in:
param.xsl, modules/numbers.xsl

Synopsis
 |$books-number-from as xs:string := 'set'

Description

 Book numbers (if books are numbered) begin from here.

 See Section 3.5, “Controlling numeration”.

 	
 root

	Books are numbered from the beginning of the document.

	
 set

	Books are numbered from their parent set.

$callout-default-column
$callout-default-column — Default column for callouts.

Parameter:
{}callout-default-column

Defined in:
param.xsl

Used in:
param.xsl, modules/verbatim.xsl

Synopsis
 |$callout-default-column := 60

Description

 When callouts are used in program listings (or screens), if the
column is not specified for a callout, it will appear in this column.

$callout-unicode-start
$callout-unicode-start — Initial callout character.

Parameter:
{}callout-unicode-start

Defined in:
param.xsl

Used in:
param.xsl, modules/programming.xsl, modules/verbatim.xsl

Synopsis
 |$callout-unicode-start := 9311

Description

 When callouts are rendered, for example in programlistingco,
this is the beginning of the range of characters to be used for callout “bugs”.
This is the decimal value of the Unicode code point that is the “zero” point in
the list, the one just before the first character.

 The default value is 9311 which means the first callout will
be 9312, U2460, “①”.

$chunk
$chunk — Produce chunked output?

Parameter:
{}chunk

Defined in:
param.xsl

Used in:
main.xsl, param.xsl, modules/variable.xsl, modules/chunk-cleanup.xsl

Used by:
$v:chunk

Synopsis
 |$chunk as xs:string? := ()

Description

 Specifying any value for this parameter turns on “chunking”, see
Section 2.6, ““Chunked” output”. The value of the parameter is taken as the filename
for the root chunk, unless some other mechanism identifies an alternate value.

$chunk-exclude
$chunk-exclude — XPath expressions for excluding chunks.

Parameter:
{}chunk-exclude

Defined in:
param.xsl

Used in:
param.xsl, modules/chunk.xsl

Synopsis
 |$chunk-exclude as xs:string* := ('self::db:partintro',
 | 'self::*[ancestor::db:partintro]',
 | 'self::db:annotation',
 | 'self::db:section[not(preceding-sibling::db:section)]',
 | 'self::db:sect1[not(preceding-sibling::db:sect1)]',
 | 'self::db:toc')

Description

 This parameter is only relevant when chunking is being performed,
see Section 2.6, ““Chunked” output”.
This parameter contains a list of XPath expressions. When
chunking is being applied, for any element that could be a chunk (see
$chunk-include), each expression is evaluated
with that element as the context item. If the effective boolean value
of any expression is true, the element will not become a chunk.

 The default value for this parameter is:

 |('self::db:partintro',
 |'self::*[ancestor::db:partintro]',
 |'self::db:toc')

 In other words partintro, all of the descendants of partintro,
and toc are explicitly excluded from being chunks.

 The namespaces in $chunk-filter-namespaces will
be in-scope when this expression is evaluated.

$chunk-include
$chunk-include — XPath expressions for identifying potential chunks.

Parameter:
{}chunk-include

Defined in:
param.xsl

Used in:
param.xsl, modules/chunk.xsl

Synopsis
 |$chunk-include as xs:string* := ('parent::db:set',
 | 'parent::db:book',
 | 'parent::db:part',
 | 'parent::db:reference',
 | 'self::db:refentry',
 | 'self::db:section',
 | 'self::db:sect1')

Description

 This parameter is only relevant when chunking is being
performed, see Section 2.6, ““Chunked” output”. This parameter contains a
list of XPath expressions. When chunking is being applied, for every
element in the document, each expression is evaluated with that
element as the context item. If the effective boolean value of any
expression is true, the element is a candidate for chunking. It will
become a chunk unless $chunk-exclude excludes it
or, in the special case of recursive sections, if it is nested too
deeply.

 The default value for this parameter is:

 |('parent::db:set',
 |'parent::db:book',
 |'parent::db:part',
 |'parent::db:reference',
 |'self::db:refentry',
 |'self::db:section',
 |'self::db:sect1')

 In other words all of the direct children of set,
book, part, reference will become
chunks (the special case of info is automatically
excluded); refentry, section,
and sect1 become chunks anywhere
they appear. In the case of recursive sections,
$chunk-section-depth also applies.

 The namespaces in $chunk-filter-namespaces will
be in-scope when this expression is evaluated.

$chunk-nav
$chunk-nav — Add keyboard navigation to chunks?

Parameter:
{}chunk-nav

Defined in:
param.xsl

Used in:
main.xsl, param.xsl

Synopsis
 |$chunk-nav as xs:string := 'true'

Description

 If $chunk-nav
 is true,
keyboard navigation will be added to chunked output. This is accomplished by
adding the $chunk-nav-js script to the generated HTML.

 Table 1. Default keyboard navigation keys
	Key	Navigation
	
 N or →
 	Next sibling
	
 P or ←
 	Previous sibling
	
 U
 	Parent
	
 H or Home
 	Home
	
 S
 	Toggle between normal and speaker view

 Notes:

 	The ↑ used to be a shortcut
for “parent”, like U, but that breaks the ability to
navigate up and down the page with the arrow keys. It was removed in
version 2.0.3.

	The S functionality is really only relevant to
when speaker notes are enabled.

$chunk-nav-js
$chunk-nav-js — Script to support keyboard navigation.

Parameter:
{}chunk-nav-js

Defined in:
param.xsl

Used in:
main.xsl, param.xsl

Synopsis
 |$chunk-nav-js as xs:string := 'js/chunk-nav.js'

Description

 If chunk navigation is enabled, this script is added to each chunk to
support keyboard navigation.

$chunk-output-base-uri
$chunk-output-base-uri — Output base URI for chunks.

Parameter:
{}chunk-output-base-uri

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl

Synopsis
 |<xsl:param
 | name="chunk-output-base-uri"
 | as="xs:string">
 | <xsl:choose>
 | <xsl:when test="not($v:chunk)"><!-- it doesn't actually matter -->
 | <xsl:sequence select="''"/>
 | </xsl:when>
 | <xsl:when use-when="function-available('ext:cwd')" test="true()">
 | <xsl:sequence select="ext:cwd()"/>
 | </xsl:when>
 | <xsl:otherwise>
 | <xsl:message terminate="yes" select="'You must specify the $chunk-output-base-uri'"/>
 | </xsl:otherwise>
 | </xsl:choose>
 |</xsl:param>

Description

 This parameter identifies the output directory where “chunks”
will be stored. If the stylesheet is not producing
chunked results (see Section 2.6, ““Chunked” output”), this parameter has no effect.

 If the ext:cwd() extension function (see
Section 2.5, “Extension functions”) is available, its value will be the default
value for this parameter. If the extension isn’t available, you must
provide a value for this parameter.

 ☝
Important
If you’re using the stylesheets from Maven, the static-base-uri()
will be something like https://cdn.docbook.org/release/…
and resolving the current working directory against that won’t be useful. It’s
better in those cases to specify the parameter explicitly with a file:
URI. (And note that it may need to be a file:/path URI, not a
file:///path URI, in order to match correctly.)

$chunk-renumber-footnotes
$chunk-renumber-footnotes — Renumber footnotes when chunking?

Parameter:
{}chunk-renumber-footnotes

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl

Used by:
$v:chunk-renumber-footnotes

Synopsis
 |$chunk-renumber-footnotes := 'true'

Description

 If this parameter is true, footnotes
will be renumbered within chunks. See $v:chunk-renumber-footnotes.

$chunk-section-depth
$chunk-section-depth — Returns the chunking depth for recursive sections.

Parameter:
{}chunk-section-depth

Defined in:
param.xsl

Used in:
param.xsl, modules/chunk.xsl

Synopsis
 |$chunk-section-depth := 1

Description

 This parameter is only relevant when chunking is being performed,
see Section 2.6, ““Chunked” output”.
For recursive sections (section,
and refsection), if the section would be a chunk
according to $chunk-include, it is further tested against
$chunk-section-depth. If it is nested more deeply than
$chunk-section-depth, it will not be considered for chunking.

 ⓘ
Note
In principle, this parameter is unnecessary as it could be represented
by $chunk-exclude expressions. However,
changing the section depth is a common customization, so it’s handled
as a separate parameter.

$classsynopsis-indent
$classsynopsis-indent — Indent for classsynopsis members.

Parameter:
{}classsynopsis-indent

Defined in:
param.xsl

Used in:
param.xsl, modules/programming.xsl

Synopsis
 |$classsynopsis-indent := ' '

Description

 Elements inside a class synopsis (field and method declarations, for example)
will be indented by this amount.

$component-numbers
$component-numbers — Are components numbered?

Parameter:
{}component-numbers

Defined in:
param.xsl

Used in:
param.xsl, modules/titles.xsl

Used by:
$v:title-groups

Synopsis
 |$component-numbers as xs:string := '1'

Description

 If $component-numbers
 is true,
components (chapters, appendixes, etc.) that do not have
an explicit label will be labeled with their component number.

 See Section 3.5, “Controlling numeration”.

$component-numbers-inherit
$component-numbers-inherit — Include component labels in section labels?

Synopsis
 |$component-numbers-inherit as xs:string := 'false'

Description

 This parameter is no longer used. See Section 3.5, “Controlling numeration”.

$components-inherit-from
$components-inherit-from — Identifies what inherited numeration applies to components.

Parameter:
{}components-inherit-from

Defined in:
param.xsl

Used in:
param.xsl, modules/titles.xsl

Synopsis
 |$components-inherit-from as xs:string := ''

Description

 If component numbers inherit from their ancestors, these are the ancestors they
inherit from.

 See Section 3.5, “Controlling numeration”.

$components-number-from
$components-number-from — Identifies where component numeration begins.

Parameter:
{}components-number-from

Defined in:
param.xsl

Used in:
param.xsl, modules/numbers.xsl

Synopsis
 |$components-number-from as xs:string := 'book'

Description

 Component numbers (if components are numbered) begin from here.

 See Section 3.5, “Controlling numeration”.

 	
 root

	Components are numbered from the beginning of the document.

	
 set

	Components are numbered from their nearest ancestor set.

	
 book

	Components are numbered from their nearest ancestor book.

	
 division

	Components are numbered from their parent division.

$control-js
$control-js — Script to support theme selection.

Parameter:
{}control-js

Defined in:
param.xsl

Used in:
main.xsl, param.xsl

Synopsis
 |$control-js as xs:string := 'js/controls.js'

Description

 If the $theme-picker is enabled, a link to
this script will be added to the document. This script must contain the JavaScript
necessary to support the theme controls.

$copyright-collapse-years
$copyright-collapse-years — Collapse sequential copyright years into a range?

Parameter:
{}copyright-collapse-years

Defined in:
param.xsl

Used in:
param.xsl, modules/info.xsl

Synopsis
 |$copyright-collapse-years := true()

Description

 If true, sequential copyright years will be collapsed into a range.

 For example,

 <copyright>
<year>1993</year>
<year>1997</year>
<year>1998</year>
<year>1999</year>
<holder>Jane Smith</holder>
</copyright>

 might be rendered: “Copyright © 1993, 1997–1999 Jane Smith”.

 If $copyright-collapse-years is false, that
wold be rendered: “Copyright © 1993, 1997, 1998, 1999 Jane Smith”.

 See also $copyright-year-range-separator
and $copyright-year-separator.

$copyright-year-range-separator
$copyright-year-range-separator — Separator character for copyright year ranges.

Parameter:
{}copyright-year-range-separator

Defined in:
param.xsl

Used in:
param.xsl, modules/info.xsl

Synopsis
 |$copyright-year-range-separator := '–'

Description

 When a sequence of copyright years is collapsed into a range,
this character is used to separate the first and last years.

 See also $copyright-collapse-years
and $copyright-year-separator.

$copyright-year-separator
$copyright-year-separator — Separator character for copyright years.

Parameter:
{}copyright-year-separator

Defined in:
param.xsl

Used in:
param.xsl, modules/info.xsl

Synopsis
 |$copyright-year-separator := ', '

Description

 When a series of copyright years (or year ranges) is formatted,
this string is used to separate them.

 See also $copyright-year-range-separator
and $copyright-collapse-years.

$date-date-format, $date-dateTime-format
$date-date-format, $date-dateTime-format — Format strings for dates and dateTimes.

Parameter:
{}date-date-format

{}date-dateTime-format

Defined in:
param.xsl (2)

Used in:
param.xsl, modules/functions.xsl, modules/info.xsl, modules/inlines.xsl

Used by:
f:date-format()

Synopsis
 |$date-date-format := '[D01] [MNn,*-3] [Y0001]'

 |$date-dateTime-format := '[H01]:[m01] [D01] [MNn,*-3] [Y0001]'

Description

 The most convenient format for storing dates that will be
machine processed: sorted, indexed, etc, is ISO 8601. When publishing these dates, it’s often
desirable to use a different format, one more familiar to readers.

 A pubdate that conforms to an ISO 8601 date (“yyyy-mm-dd”)
will be formatted with the $date-date-format;
one that conforms to an ISO 8601 dateTime (“yyyy-mm-ddThh:mm:ss”)
will be formatted with the $date-dateTime-format.

 See also f:date-format().

$dc-metadata
$dc-metadata — Output Dublin Core metadata?

Parameter:
{}dc-metadata

Defined in:
param.xsl

Used in:
param.xsl, modules/head.xsl

Synopsis
 |$dc-metadata as xs:string := 'true'

Description

 If this parameter is true, the
head element
of each result document will contain
meta elements
for Dublin Core metadata that can be derived from the source
document.

$debug
$debug — Debugging flags.

Parameter:
{}debug

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl

Used by:
$v:debug

Static:
Yes

Synopsis
 |$debug as xs:string := ''

Description

 The $debug parameter contains a space
separated list of flags. Depending on which flags are enabled, various additional
debugging messages will be emitted during processing.

 The following flags are supported:

 	
 callouts

	Display additional information about callout processing.

	
 cals-align-char

	Display additional information about the computation of character alignment
processing in CALS tables.

	
 chunk-cleanup

	Display additional information about chunk cleanup processing.

	
 chunks

	Display additional information about chunk selection.

	
 db4to5

	Display additional information about the DocBook 4.x to 5.x upgrade process.

	
 dynamic-profile

	Display additional information about
dynamic profiling.

	
 dynamic-profile-suppress

	Display additional information about what elements are suppressed by
dynamic profiling.

	
 image-properties

	Display additional information about the results of the extracting
properties from images. This will display all of the properties available from
each image.

	
 image-markup

	Display the markup generated for media objects.

	
 intra-chunk-links

	Display additional information about the resolution of intra-chunk references.
to links.

	
 intra-chunk-refs

	Display additional information about intra-chunk references.

	
 mediaobject-uris

	Display additional information about how media object URIs are constructed.

	
 linkbase

	Display additional information about how XLink linkbases are resolved.

	
 localization

	Display additional information about localization data.

	
 numeration

	Display additional information about how elements are numbered (in titles, in cross references, etc.)

	
 objects

	Display additional information about how media objects are selected.

	
 pipeline

	Display additional information about the pipeline processing stages.

	
 profile

	Display additional information about profiling.

	
 profile-suppress

	Display additional information about what elements are suppressed by
profiling.

	
 properties

	Display additional information about the properties associated
with a verbatim environment.

	
 render-verbatim

	Display additional information about how verbatim environments are rendered.

	
 tables

	Display additional information about how tables are rendered.

	
 template-matches

	Display additional information about how title page templates are selected.

	
 templates

	Display additional information about title page templates.

	
 verbatim

	Display additional information about how verbatim elements are processed.

	
 xlink

	Display additional information about XLink resolution.

$default-float-style
$default-float-style — Default float style.

Parameter:
{}default-float-style

Defined in:
param.xsl

Used in:
param.xsl, modules/attributes.xsl

Synopsis
 |$default-float-style := 'left'

Description

 The floatstyle attribute on formal objects
(figure, etc.) indicates that they should float. This is
achieved by adding the float style as a class value in the HTML
output. If the value of floatstyle is
“float”, then the
$default-float-style will be applied. In other
words, the CSS classes will be “float left” (as long
as $default-float-style is “left”).
If any other value is given for floatstyle, then
the CSS classes will be “float
 value”.

$default-language
$default-language — Default language.

Parameter:
{}default-language

Defined in:
param.xsl

Used in:
param.xsl, modules/gentext.xsl, modules/functions.xsl

Used by:
f:languages(), f:in-scope-language(), f:l10n-language()

Synopsis
 |$default-language := 'en'

Description

 If the stylesheets need to generate text (the names of labels
such as “Chapter”, for example), they attempt to do so in the same
language as the document. This is determined by finding the nearast
in-scope xml:lang attribute from the context where the
generated text is required.

 If there is no in-scope xml:lang attribute,
or if there is no localization available for the language
specified,
the
$default-language is used instead.

$default-length-magnitude, $default-length-unit
$default-length-magnitude, $default-length-unit — The magnitude and units of the default length.

Parameter:
{}default-length-magnitude

{}default-length-unit

Defined in:
param.xsl (2)

Used in:
param.xsl, modules/units.xsl

Used by:
f:parse-length()

Synopsis
 |$default-length-magnitude := 25.0

 |$default-length-unit := '%'

Description

 If the stylesheet encounters a length that it cannot parse, the default
magnitude and unit are used for that length. See Section 5.2, “Lengths and units”.

$default-theme
$default-theme — Default theme.

Parameter:
{}default-theme

Defined in:
param.xsl

Used in:
param.xsl, modules/chunk-cleanup.xsl

Synopsis
 |$default-theme as xs:string := ''

Description

 If a $default-theme is specified, its
value will be added to the class attribute on the
html element(s)
generated. The actual theme implementation is performed in CSS.
See $theme-list for a list of themes. You can add
your own themes with custom CSS (with m:html-head-links mode, for
example).

$division-numbers
$division-numbers — Are divisions numbered?

Parameter:
{}division-numbers

Defined in:
param.xsl

Used in:
param.xsl, modules/titles.xsl

Used by:
$v:title-groups

Synopsis
 |$division-numbers as xs:string := '1'

Description

 If $division-numbers
 is true,
divisions (books, parts, references, etc.) that do not have
an explicit label will be labeled with their division number.

 See also
$v:title-properties.

$division-numbers-inherit
$division-numbers-inherit — Include division labels in component labels?

Synopsis
 |$division-numbers-inherit as xs:string := 'false'

Description

 This parameter is no longer used. See Section 3.5, “Controlling numeration”.

$divisions-inherit-from
$divisions-inherit-from — Identifies what inherited numeration applies to divisions.

Parameter:
{}divisions-inherit-from

Defined in:
param.xsl

Used in:
param.xsl, modules/titles.xsl

Synopsis
 |$divisions-inherit-from as xs:string := ''

Description

 If division numbers inherit from their ancestors, these are the ancestors they
inherit from.

 See Section 3.5, “Controlling numeration”.

$divisions-number-from
$divisions-number-from — Identifies where division numeration begins.

Parameter:
{}divisions-number-from

Defined in:
param.xsl

Used in:
param.xsl, modules/numbers.xsl

Synopsis
 |$divisions-number-from as xs:string := 'book'

Description

 Divisions numbers (if divisions are numbered) begin from here.

 See Section 3.5, “Controlling numeration”.

 	
 root

	Divisions are numbered from the beginning of the document.

	
 set

	Divisions are numbered from their nearest ancestor set.

	
 book

	Divisions are numbered from their parent book.

$docbook-transclusion
$docbook-transclusion — Enable DocBook transclusion processing.

Parameter:
{}docbook-transclusion

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$docbook-transclusion := 'false'

Description

 The $docbook-transclusion controls whether or not
DocBook transclusion processing (see Transclusion) is
performed. The default at present is false because I don’t believe it’s in widespread
use and transclusion processing on large documents can be quite slow. If either
of those conditions change, the default may become true in some future version
of the stylesheets.

$dynamic-profile-error
$dynamic-profile-error — How are errors in dynamic profiling handled?

Parameter:
{}dynamic-profile-error

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$dynamic-profile-error := 'ignore'

Description

 If an error occurs evaluating a dynamic profiling expression, what should happen?
That depends on the setting of $dynamic-profile-error:

 	
 ignore

	The error is ignored. This has no effect on whether or not the
element is included.

	
 include

	The error is ignored and the expression is considered to have
returned a value of “true”.

	
 exclude

	The error is ignored and the expression is considered to have
returned a value of “false”.

	
 error

	Raises the dbe:DYNAMIC-PROFILE-EVAL-ERROR exception.

	any other value
	Raises the dbe:INVALID-DYNAMIC-PROFILE-ERROR exception.

$dynamic-profile-variables
$dynamic-profile-variables — Dynamic profiling variables.

Parameter:
{}dynamic-profile-variables

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$dynamic-profile-variables as map(xs:QName, item()*)? := ()

Description

 The dynamic profile variables are passed to each of the pre- and
post-processing transformations in addition to the standard
parameters. See Section 5.7, “The pre- and post-processing pipeline”.

$dynamic-profiles
$dynamic-profiles — Is dynamic profiling enabled?

Parameter:
{}dynamic-profiles

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$dynamic-profiles as xs:string := 'false'

Description

 If this parameter is true, dynamic profiling
will be applied to the document. See Section 2.7.3, “Dynamic profiling”.

$experimental-pmuj
$experimental-pmuj — Insert reverse links.

Parameter:
{}experimental-pmuj

Defined in:
param.xsl

Used in:
param.xsl, modules/xlink.xsl

Synopsis
 |$experimental-pmuj := 'false'

Description

 If $experimental-pmuj
 is
true, then links will be inserted from link targets back
to link sources. In other words, if clicking on “A” jumps
you to “B”, the stylesheets will add a link at “B” that jumps you back
back to “A”. (Pmuj is jump spelled backwards.)

 ⚠
Caution
This feature is entirely experimental. It may change in
arbitrary ways or it may be abandoned.

 Support is limited at the moment to inlines and formal objects
that have title pages. There’s currently no where to insert markup for
every possible element that could be a link target.

 Pmuj’s from title pages should probably be inserted in the
heading, not above it, just because the styling would be nicer.

$fallback-js
$fallback-js — Script to support audio/video fallback.

Parameter:
{}fallback-js

Defined in:
param.xsl

Used in:
main.xsl, param.xsl, modules/objects.xsl

Synopsis
 |$fallback-js := 'js/fallback.js'

Description

 Apparently, there’s no declarative way to offer an HTML fallback
message when all of the audio or video sources in a media object are
unusable. Instead, it has to be done with JavaScript.

 This parameter identifies the JavaScript file to load for this support.
It must define a global function named docbook_object_fallback
that takes the source node as a paramter.

 To disable fallback, set this parameter to the empty sequence or the
empty string.

 Place this script in the
head of the document
and do not defer loading it.

$footnote-numeration
$footnote-numeration — How are footnotes numbered?

Parameter:
{}footnote-numeration

Defined in:
param.xsl

Used in:
param.xsl, modules/footnotes.xsl, modules/chunk-cleanup.xsl

Synopsis
 |$footnote-numeration := ('1')

Description

 There are different styles of footnote numeration. This parameter
contains a list of the symbols that should be used. If there could be more
footnotes than symbols in the list, the last symbol in the
list must be a character suitable for formatting numbers.

 For example, if the sequence in $footnote-numeration is
“*”, “†”, “a”, then the first footnote will be marked with “*”,
the second with “†”, the third with
“a”, the forth with
“b”, and so on.

 When chunking, footnotes may be renumbered
within each chunk (see $chunk-renumber-footnotes).

$formal-object-title-placement
$formal-object-title-placement — Specify placement of title on formal elements.

Parameter:
{}formal-object-title-placement

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl

Used by:
$v:formal-object-title-placement, $v:formalgroup-nested-object-title-placement

Synopsis
 |$formal-object-title-placement := 'after table:before formalgroup:before'

Description

 Formal elements are elements with a title that are often
displayed with a caption: figure, table,
example and equation. The
$formal-object-title-placement parameter determines
if the title precedes or follows the element itself.

 The parameter consists of a series of tokens, “before”,
“after”, or
“element
 :
 position”.
The named forms (e.g., figure:before) take precedence with
the unnamed form serving as a default for any that don’t have named forms.

$formal-objects-inherit-from
$formal-objects-inherit-from — Identifies what inherited numeration applies to formal-objects.

Parameter:
{}formal-objects-inherit-from

Defined in:
param.xsl

Used in:
param.xsl, modules/titles.xsl

Synopsis
 |$formal-objects-inherit-from as xs:string := 'component'

Description

 If formal object numbers inherit from their ancestors, these are the ancestors they
inherit from.

 See Section 3.5, “Controlling numeration”.

$formal-objects-number-from
$formal-objects-number-from — Identifies where formal-object numeration begins.

Parameter:
{}formal-objects-number-from

Defined in:
param.xsl

Used in:
param.xsl, modules/numbers.xsl

Synopsis
 |$formal-objects-number-from as xs:string := 'component'

Description

 Formal object numbers (if formal objects are numbered) begin from here.

 See Section 3.5, “Controlling numeration”.

 	
 root

	Formal objects are numbered from the beginning of the document.

	
 set

	Formal objects are numbered from their nearest ancestor set.

	
 book

	Formal objects are numbered from their nearest ancestor book.

	
 division

	Formal objects are numbered from their nearest ancestor division.

	
 component

	Formal objects are numbered from their nearest ancestor component.

	
 section

	Formal objects are numbered from their parent section.

$formalgroup-nested-object-title-placement
$formalgroup-nested-object-title-placement — Specify placement of title on formal elements inside formalgroup
 .

Parameter:
{}formalgroup-nested-object-title-placement

Defined in:
param.xsl

Used in:
param.xsl

Since:
2.0.13

Synopsis
 |$formalgroup-nested-object-title-placement := 'after'

Description

 The $formal-object-title-placement parameter
controls how formal object titles are displayed generally. The
$formalgroup-nested-object-title-placement parameter
specifies how formal object titles are displayed when the
formal object is inside a formalgroup. It has the same format
as $formal-object-title-placement.

$funcsynopsis-default-style
$funcsynopsis-default-style — Default style for function synopses.

Parameter:
{}funcsynopsis-default-style

Defined in:
param.xsl

Used in:
param.xsl, modules/programming.xsl

Synopsis
 |$funcsynopsis-default-style := 'kr'

Description

 The funcsynopsis element can be rendered in several
styles. The $funcsynopsis-default-style
parameter determines which style is used by default.

$funcsynopsis-table-threshold
$funcsynopsis-table-threshold — Maximium width of a function synopsis.

Parameter:
{}funcsynopsis-table-threshold

Defined in:
param.xsl

Used in:
param.xsl, modules/programming.xsl

Synopsis
 |$funcsynopsis-table-threshold := 40

Description

 When rendering funcsynopsis elements, the width of the synopsis depends on
the number of parameters and the lengths of their names and types. If the width of the
funcsynopsis would exceed $funcsynopsis-table-threshold characters,
the presentation switches from an inline style to a tabular style.
The tabular style aligns the parameters up vertically after the function name.

$funcsynopsis-trailing-punctuation
$funcsynopsis-trailing-punctuation — Trailing punctuation in function synopses.

Parameter:
{}funcsynopsis-trailing-punctuation

Defined in:
param.xsl

Used in:
param.xsl, modules/programming.xsl

Synopsis
 |$funcsynopsis-trailing-punctuation := ';'

Description

 This punctuation character is added after the end of a
funcsynopisis. The default value of “;” is appropriate for
C and other languages that use “;” as statement separator.

$generate-html-page
$generate-html-page — Generate the HTML page structure around the styled document.

Parameter:
{}generate-html-page

Defined in:
param.xsl

Used in:
docbook.xsl, param.xsl

Used by:
t:docbook

Synopsis
 |$generate-html-page as xs:string := 'true'

Description

 If this parameter is true, then a
complete HTML page will be generated for the transformed document: an
html tag, head and body tags, etc. If
it’s false, then only the “raw” transformed content will be
produced. This is true for both the primary output and any secondary result documents.

 ⓘ
Note
When the “raw” output option is selected, links to the CSS
stylesheets, scripts, and other interactive features will not be
generated. You must make sure those are provided in some other way.

$generate-index
$generate-index — Automatically generate an index?

Parameter:
{}generate-index

Defined in:
param.xsl

Used in:
param.xsl, modules/index.xsl

Synopsis
 |$generate-index := 'true'

Description

 If a document contains an empty setindex, index, or
indexdiv, and $generate-index
 is true, then an index will automatically be generated
from any indexterms found in the document.

$generate-nested-toc
$generate-nested-toc — Determines if subsubections appear in the table of contents.

Synopsis
 |$generate-nested-toc as xs:string := 'not(f:section(.))
 | or (f:section(.) and f:section-depth(.) le $vp:section-toc-depth)'

Description

 This parameter is no longer used. Instead, you can control the elements
that appear in a table of contents with the m:toc-nested mode.

$generate-toc
$generate-toc — Generate a table-of-contents?

Synopsis
 |$generate-toc as xs:string := '(empty(parent::*) and self::db:article)
 | or self::db:set or self::db:book
 | or self::db:part or self::db:reference'

Description

 This parameter is no longer used. Instead, you can control the elements
that contain a table of contents with the m:toc mode.

$generate-trivial-toc
$generate-trivial-toc — Generate a trivial table-of-contents?

Parameter:
{}generate-trivial-toc

Defined in:
param.xsl

Used in:
param.xsl, modules/toc.xsl

Synopsis
 |$generate-trivial-toc as xs:string := 'false'

Description

 If the $generate-trivial-toc parameter
is true, a table of contents will be generated even if it
consists of only a single entry. Otherwise, such “trivial” tables of contents will be elided.

 This
parameter applies only to top-level tables of contents. Nested tables
of contents will be generated even if they consist of only a single
entry.

$generated-id-root
$generated-id-root — The string generated as the unique identifier for the root of the tree.

Parameter:
{}generated-id-root

Defined in:
param.xsl

Used in:
param.xsl, modules/functions.xsl

Used by:
f:generate-id()

Synopsis
 |$generated-id-root := 'R'

Description

 When f:generate-id() is constructing a unique
identifier for an element, it walks up the ancestors of that element. If it reaches
the root of the tree, it uses $generated-id-root to mark that
location.

$generated-id-sep
$generated-id-sep — The string generated to separate parts of a unique identifier.

Parameter:
{}generated-id-sep

Defined in:
param.xsl

Used in:
param.xsl, modules/functions.xsl

Used by:
f:generate-id()

Synopsis
 |$generated-id-sep := '_'

Description

 When f:generate-id() is constructing a unique
identifier for an element, it walks up the ancestors of that element.
To make the identifiers easier to read, and to disambiguate values, it
places $generated-id-sep between each component
that it uses.

 ⓘ
Note
Historically, a “.” was used as the separator. However, if
JavaScript is going to be used to process the HTML documents that the
stylesheet produces, that may be inconvenient. (Because selectors use
“.” to separate element names from class values.)

$generator-metadata
$generator-metadata — Output generator metadata?

Parameter:
{}generator-metadata

Defined in:
param.xsl

Used in:
param.xsl, modules/head.xsl

Synopsis
 |$generator-metadata as xs:string := 'true'

Description

 If this parameter is true, the
head element
of each result document will contain a
meta element
with the name generator that identifies the
stylesheet and processor used to produce the result.

$gentext-language
$gentext-language — Specifies language for generated text.

Parameter:
{}gentext-language

Defined in:
param.xsl

Used in:
param.xsl, modules/gentext.xsl, modules/functions.xsl

Used by:
f:languages(), f:l10n-language()

Synopsis
 |$gentext-language := ()

Description

 The language used for generated text (words “Chapter”
and “Figure”, for example) usually depends on the language of the (section of)
the document where they appear. If $gentext-language is
specified, that language will be used for all generated text, regardless of
the context.

$glossary-collection
$glossary-collection — An external collection of glossary entries.

Parameter:
{}glossary-collection

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$glossary-collection as xs:string := ''

Description

 It’s often convenient to share a common glossary
across many documents. If
$glossary-collection points to a
glossary, the stylesheets will automatically populate glossary
entries in the document being transformed.

 To achieve this:

 	Create a shared glossary and store it somewhere. Make sure that
each entry in your shared glossary has a unique xml:id value.

	Run your
transformation with $glossary-collection set
to the URI of that document.

	In the document you’re transforming, refer to the shared entries
with completely empty glossentry
elements that have the same xml:id as an entry in the
shared glossary.

 The stylesheets will copy those entries into your document before processing it.

$glossary-sort-entries
$glossary-sort-entries — Sort glossaries?

Parameter:
{}glossary-sort-entries

Defined in:
param.xsl

Used in:
param.xsl, modules/glossary.xsl

Synopsis
 |$glossary-sort-entries := true()

Description

 If $glossary-sort-entries is true, the entries in a
glossary or glosslist will be sorted before transformation.
This saves the author from the burden of maintaining the list in a strictly
alphabetic order.

$html-extension
$html-extension — The extension used for HTML output when chunking.

Parameter:
{}html-extension

Defined in:
param.xsl

Used in:
param.xsl, modules/chunk.xsl

Used by:
f:chunk-filename()

Synopsis
 |$html-extension := '.html'

Description

 When using chunking (see Section 2.6, ““Chunked” output”), the resulting
HTML documents will have this extension by default.

$image-ignore-scaling
$image-ignore-scaling — Ignore scaling?

Parameter:
{}image-ignore-scaling

Defined in:
param.xsl

Used in:
param.xsl, modules/objects.xsl

Used by:
f:object-width(), f:object-height(), f:object-contentwidth(), f:object-contentheight(), f:object-scalefit(), f:object-scale()

Synopsis
 |$image-ignore-scaling as xs:boolean := false()

Description

 If this parameter is true, all of the scaling attributes on
images are ignored. Images will be displayed at their intrinsic size.

$image-nominal-height
$image-nominal-height — Nominal height of an image.

Parameter:
{}image-nominal-height

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl

Used by:
$v:image-nominal-height

Synopsis
 |$image-nominal-height := '4in'

Description

 If the extension functions necessary to determine the intrinsic height
of an image are unavailable, or if the height cannot be determined, this value
will be used as the assumed intrinsic height of the image.

$image-nominal-width
$image-nominal-width — Nominal width of an image.

Parameter:
{}image-nominal-width

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl

Used by:
$v:image-nominal-width

Synopsis
 |$image-nominal-width := $nominal-page-width

Description

 If the extension functions necessary to determine the intrinsic width
of an image are unavailable, or if the width cannot be determined, this value
will be used as the assumed intrinsic width of the image.

$image-property-warning
$image-property-warning — Warn if image properties cannot be obtained?

Parameter:
{}image-property-warning

Defined in:
param.xsl

Used in:
param.xsl, modules/objects.xsl

Used by:
f:object-properties()

Synopsis
 |$image-property-warning := true()

Description

 This flag controls whether or not an
xsl:message is emitted when
the ext:image-properties() extension function is unavailable.

$index-on-role, $index-on-type
$index-on-type, $index-on-role — Make distinct indexes based on role and type?

Parameter:
{}index-on-type

{}index-on-role

Defined in:
param.xsl (2)

Used in:
param.xsl, modules/index.xsl

Used by:
t:generate-index

Synopsis
 |$index-on-type := 'true'

 |$index-on-role := 'true'

Description

 DocBook supports the creation of different types of index. A book
that documents an API might have a general index, for example, and also an
index of functions, an index of variables, etc.

 Typed indexes are created by specifying the index type in the
type or role attribute. If
$index-on-type is true, then separate indexes
will be generated based on type values. If
$index-on-role is true, then separate indexes
will be generated based on role values.

$index-show-entries
$index-show-entries — Make index entries visible in the text?

Parameter:
{}index-show-entries

Defined in:
param.xsl

Used in:
param.xsl, modules/index.xsl

Synopsis
 |$index-show-entries := ()

Description

 If this value is non-empty, small markers will be left in the text
where indexterm elements appear. This is probably not appropriate for
final publication, but it can be a useful way to review the level of indexing.

$indexed-section-groups
$indexed-section-groups — Generate index entries grouped by section.

Parameter:
{}indexed-section-groups

Defined in:
param.xsl

Used in:
param.xsl, modules/index.xsl

Synopsis
 |$indexed-section-groups := 'true'

Description

 Before the introduction of this parameter, an automatically generated index
contained only one index entry for any given section.
If the $indexed-section-groups parameter
is true, an index entry will be generated for every
indexterm, with a
span surrounding all
of the entries for each section. This results in a more complete index while
still preserving the ability to see in which sections the terms occur.

$lists-of-equations
$lists-of-equations — Generate a list of equations?

Parameter:
{}lists-of-equations

Defined in:
param.xsl

Used in:
param.xsl, modules/toc.xsl

Synopsis
 |$lists-of-equations as xs:string := 'false'

Description

 If true, a list of equations will be generated. By default, they are only
generated for books and sets.

 This is a pseudo-boolean parameter. It is considered true if it
has the value '1’, ‘yes’, or ‘true’. Any other value is considered false.

$lists-of-examples
$lists-of-examples — Generate a list of examples?

Parameter:
{}lists-of-examples

Defined in:
param.xsl

Used in:
param.xsl, modules/toc.xsl

Synopsis
 |$lists-of-examples as xs:string := 'true'

Description

 If true, a list of examples will be generated. By default, they are only
generated for books and sets.

 This is a pseudo-boolean parameter. It is considered true if it
has the value '1’, ‘yes’, or ‘true’. Any other value is considered false.

$lists-of-figures
$lists-of-figures — Generate a list of figures?

Parameter:
{}lists-of-figures

Defined in:
param.xsl

Used in:
param.xsl, modules/toc.xsl

Synopsis
 |$lists-of-figures as xs:string := 'true'

Description

 If true, a list of figures will be generated. By default, they are only
generated for books and sets.

 This is a pseudo-boolean parameter. It is considered true if it
has the value '1’, ‘yes’, or ‘true’. Any other value is considered false.

$lists-of-procedures
$lists-of-procedures — Generate a list of figures?

Parameter:
{}lists-of-procedures

Defined in:
param.xsl

Used in:
param.xsl, modules/toc.xsl

Synopsis
 |$lists-of-procedures as xs:string := 'false'

Description

 If true, a list of procedures will be generated. By default, they are only
generated for books and sets.

 This is a pseudo-boolean parameter. It is considered true if it
has the value '1’, ‘yes’, or ‘true’. Any other value is considered false.

$lists-of-tables
$lists-of-tables — Generate a list of tables?

Parameter:
{}lists-of-tables

Defined in:
param.xsl

Used in:
param.xsl, modules/toc.xsl

Synopsis
 |$lists-of-tables as xs:string := 'true'

Description

 If true, a list of tables will be generated. By default, they are only
generated for books and sets.

 This is a pseudo-boolean parameter. It is considered true if it
has the value '1’, ‘yes’, or ‘true’. Any other value is considered false.

$local-conventions
$local-conventions — Transformation for local conventions.

Parameter:
{}local-conventions

Defined in:
param.xsl

Used in:
docbook.xsl, param.xsl

Used by:
$v:standard-transforms

Synopsis
 |$local-conventions as xs:string? := ()

Description

 This parameter allows you to specify a tranformation for local
markup conventions. This book uses several non-DocBook tagging
conventions as a typing convenience,
<att> for <tag class="attribute">,
for example. These can be translated back into proper DocBook markup
by the $local-conventions stylesheet. This
stylesheet is run during the $v:standard-transforms,
just before validation
(see $relax-ng-grammar).

 For example, the test suite stylesheet
that transforms pseudo-DocBook elements “att” and
“mode” into valid DocBook markup looks like this:

 | <?xml version="1.0" encoding="utf-8"?>
 |<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 | xmlns="http://docbook.org/ns/docbook"
 | xmlns:db="http://docbook.org/ns/docbook"
 | xmlns:xs="http://www.w3.org/2001/XMLSchema"
 | exclude-result-prefixes="db xs"
 | version="3.0">
 |
 |<xsl:template match="db:att">
 | <tag class="attribute">
 | <xsl:copy-of select="@* except @class"/>
 | <xsl:apply-templates/>
 | </tag>
 |</xsl:template>
 |
 |<xsl:template match="db:mode">
 | <code role="{string-join(
 | distinct-values((@role/string(), 'mode')),
 | ' ')}">
 | <xsl:copy-of select="@* except @role"/>
 | <xsl:apply-templates/>
 | </code>
 |</xsl:template>
 |
 |<xsl:template match="element()">
 | <xsl:copy>
 | <xsl:apply-templates select="@*,node()"/>
 | </xsl:copy>
 |</xsl:template>
 |
 |<xsl:template match="attribute()|text()|comment()
 | |processing-instruction()">
 | <xsl:copy/>
 |</xsl:template>
 |
 |</xsl:stylesheet>
 |
 |

$mathml-js
$mathml-js — JavaScript library supporting MathML.

Parameter:
{}mathml-js

Defined in:
param.xsl

Used in:
main.xsl, param.xsl

Synopsis
 |$mathml-js := 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=MML_CHTML'

Description

 If your documents use MathML, this library will be included to support
MathML rendering. MathJax is a popular choice.

$mediaobject-accessibility
$mediaobject-accessibility — Accessibility settings for media objects.

Parameter:
{}mediaobject-accessibility

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl

Synopsis
 |$mediaobject-accessibility as xs:string := 'summary details'

Description

 The $mediaobject-accessibility parameter
determines how accessibility features are added to media objects
(image, video, and audio elements).

 The value of this parameter is a space-separated list of strings. If the list
contains:

 	summary
	A summary attribute will be added if there is an
alt element or a textobject containing a single
phrase is available.

	details
	A details element will be added to the div
that surrounds the image if there is
a textobject containing anything other than a single
phrase available.

	a11y-metadata
	Metadata will be provided using the conventions described
in EPUB Accessibility.

 The list may contain either or both values. If other values are present,
they are ignored.

 See Example 1, “An example of media object accessibility”.

 |<mediaobject>
 | <alt>This is a skeuomorphic “postage stamp” with the
 |DocBook logo.</alt>
 | <imageobject>
 | <imagedata fileref="media/stamp400x256.png"/>
 | </imageobject>
 | <textobject>
 | <para>This is a skeuomorphic image of a “postage
 |stamp.” Centrally, it features the DocBook wood
 |duck logo. the word “DocBook” appears on the left
 |hand side, rotated 90° counter-clockwise. The
 |DocBook tag line, “The Source for Documentation”
 |is printed in the upper-right corner.
 |</para>
 | </textobject>
 |</mediaobject>

Example 1. An example of media object accessibility

 One possible rendering of such an example:

 [image: This is a skeuomorphic “postage stamp” with the DocBook logo.]

 Inspection of the HTML will reveal that the summary attribute
is present on the div that wraps the figure and a
details element precedes the image. These may or may not be
rendered by your user agent depending on its accessibility features and
settings.

 See also $table-accessibility.

$mediaobject-details-placement
$mediaobject-details-placement — Specify placement of details on media objects.

Parameter:
{}mediaobject-details-placement

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl

Used by:
$v:mediaobject-details-placement

Since:
2.0.13

Synopsis
 |$mediaobject-details-placement := 'before'

Description

 If a details element is generated for a media object, this parameter
determines if it goes before or after the object.

 The parameter consists of a series of tokens, “before”,
“after”, or
“element
 :
 position”.
The named forms (e.g., figure:before) take precedence with
the unnamed form serving as a default for any that don’t have named forms.

$mediaobject-exclude-extensions
$mediaobject-exclude-extensions — Exclude media objects by extension.

Parameter:
{}mediaobject-exclude-extensions

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl

Used by:
$v:mediaobject-exclude-extensions

Synopsis
 |$mediaobject-exclude-extensions as xs:string := ".eps .ps .pdf"

Description

 The mediaobject element (and inlinemediaobject)
can contain several, alternative objects. The
$mediaobject-exclude-extensions parameter provides
a way to exclude some of them.

 One common use case is to provide two versions of each image,
one as a bitmap, perhaps a
PNG
 ,
and another as a vector, perhaps an
EPS
 . Then
$mediaobject-exclude-extensions can be used to exclude
“.eps” images from the web format and “.png” images from the print (or paged media)
format.

$mediaobject-grouped-by-type
$mediaobject-grouped-by-type — Are media grouped by type?

Parameter:
{}mediaobject-grouped-by-type

Defined in:
param.xsl

Used in:
param.xsl, modules/objects.xsl

Used by:
f:mediaobject-amend-uri()

Since:
2.0.8

Synopsis
 |$mediaobject-grouped-by-type as xs:string := 'false'

Description

 If $mediaobject-grouped-by-type
 is true,
an extra directory level is implicit in the input path. Images are grouped
by type, so image.png is assumed to be in

 $mediaobject-input-base-uri/png/image.png.

 The f:mediaobject-amend-uri() function adds the type,
which is computed by f:mediaobject-type().

$mediaobject-input-base-uri
$mediaobject-input-base-uri — Base URI of images and other media in the XML sources.

Parameter:
{}mediaobject-input-base-uri

Defined in:
param.xsl

Used in:
param.xsl, modules/objects.xsl

Used by:
f:mediaobject-input-base-uri()

Synopsis
 |$mediaobject-input-base-uri as xs:string? := ()

Description

 Computing the correct URI for media objects (images, videos,
audio files, etc.) is complicated. See Section 5.4.1, “Mediaobject URIs”.
The $mediaobject-input-base-uri is used to compute
the absolute base URI of input media objects.

 If the “cwd” extension function is
available, then the default value of this parameter is the current working
directory. Otherwise, the default value is the empty string.

 The current working directory is only likely to be a useful value for
this parameter if you are running the processor in the same directory where
your XML source files are stored.
See $v:mediaobject-input-base-uri.

$mediaobject-output-base-uri
$mediaobject-output-base-uri — Base URI of images and other media in the output.

Parameter:
{}mediaobject-output-base-uri

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl, modules/chunk-cleanup.xsl

Used by:
$v:mediaobject-output-base-uri

Synopsis
 |$mediaobject-output-base-uri as xs:string? := ()

Description

 Computing the correct URI for media objects (images, videos,
audio files, etc.) is complicated. See Section 5.4.1, “Mediaobject URIs”.
The $mediaobject-output-base-uri is used to compute
the base URI of media objects in the output.

 It defaults to the empty string.
See $v:mediaobject-output-base-uri.

$mediaobject-output-paths
$mediaobject-output-paths — Preserve input mediaobject paths in output.

Parameter:
{}mediaobject-output-paths

Defined in:
param.xsl

Used in:
param.xsl, modules/chunk-cleanup.xsl

Synopsis
 |$mediaobject-output-paths as xs:string := 'true'

Description

 FIXME:

$mediaobject-video-element
$mediaobject-video-element — Use the video element?

Parameter:
{}mediaobject-video-element

Defined in:
param.xsl

Used in:
param.xsl, modules/objects.xsl

Synopsis
 |$mediaobject-video-element as xs:string := 'video'

Description

 This element identifies the element to use for video content.
The default starting in version 1.11.0 is
video where it
had previously been
iframe.

 Video is a bit complicated, the
video element works best
for local video sources but won’t work for embedding content from other sites.
If all of your content is embedded, specifying
iframe here will
be simplest.

 If you need a mixture, of styles, it can be specified on a per-video
basis with the
db
 processing instruction using the
video
 pseudo-attribute.

 ⓘ
Note
The only supported values are iframe and
video; you cannot use this parameter or the processing
instruction to insert arbitrary element names.

$message-level
$message-level — How chatty should status messages be?

Parameter:
{}message-level

Defined in:
param.xsl

Used in:
param.xsl, modules/verbatim.xsl, modules/chunk-cleanup.xsl

Synopsis
 |$message-level as xs:integer := 1

Description

 Broadly speaking, there are three kinds of messages that the
stylesheets produce: debugging messages, status messages, and errors.
Debugging messages are controled by the $debug
parameter. Error messages cause stylesheet processing to abort. Status
messages fall somewhere in between. They alert you to facts about your
document that you might want to fix, for example, broken cross references.
If you ignore them, the stylesheets will produce some output.

 Previously, status messages were always printed. This parameter
has been introduced to provide more control. If
$message-level is 0, most status messages will
be suppressed. A value greater than 0 will cause some or all status
messages to be printed. (At the time of this writing, all messages are
at level 1, but it’s possible that more detailed messaging will be
introduced in the future.)

$nominal-page-width
$nominal-page-width — The nominal page width.

Parameter:
{}nominal-page-width

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl

Used by:
$image-nominal-width, $v:nominal-page-width

Synopsis
 |$nominal-page-width := '6in'

Description

 To calculate the width of the columns in some complex CALS
tables, the stylesheets need to know the page width. The
$nominal-page-width is used for this
value.

$number-single-appendix
$number-single-appendix — Number a single appendix?

Parameter:
{}number-single-appendix

Defined in:
param.xsl

Used in:
param.xsl, modules/titles.xsl

Synopsis
 |$number-single-appendix := 'true'

Description

 If a book (or other element) has several appendixes, they will
be numbered, usually “A”, “B”, “C”, etc. If there is only a single appendix,
it will be numbered if $number-single-appendix
 is true. Otherwise, it will be unnumbered.

 This can be used to create the numbered title “Appendix” for a
single appendix.

$olink-databases
$olink-databases — External olink databases.

Parameter:
{}olink-databases

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl

Used by:
$v:olink-databases

Synopsis
 |$olink-databases as xs:string := ''

Description

 The $olink-databases parameter is a comma separated
list of URIs. Each URI should contain an olink target database.

$orderedlist-item-numeration
$orderedlist-item-numeration — Numeration for nested ordered lists.

Parameter:
{}orderedlist-item-numeration

Defined in:
param.xsl

Used in:
param.xsl, modules/functions.xsl

Used by:
f:orderedlist-item-numeration()

Synopsis
 |$orderedlist-item-numeration := '1aiAI'

Description

 The $orderedlist-item-numeration parameter
controls the numeration style of nested orderedlist elements.
Items in the top-level list will use the numeration style of the first character
in $orderedlist-item-numeration, items in the second-level
list will use the numeration style of the second character in the string, etc.
If the list depth exceeds the number of characters in
the $orderedlist-item-numeration, selection “wraps back around”
to the first character.

 In other words, if the string is “1ai”:
list items at the first, fourth, seventh, tenth, etc. depth will have arabic numeration.
List items at the second, fifth, eight, eleventh, etc. depth will have lowercase alpha
numeration, etc.

$othername-in-middle
$othername-in-middle — Treat othername as a middle name.

Parameter:
{}othername-in-middle

Defined in:
param.xsl

Used in:
param.xsl, modules/info.xsl

Used by:
t:person-name-first-last

Synopsis
 |$othername-in-middle := 'true'

Description

 If $othername-in-middle is true, then
the first othername in a personname will be presented
as the person’s “middle” name. See t:person-name.

$output-media
$output-media — The intended output media.

Parameter:
{}output-media

Defined in:
main.xsl, param.xsl

Used in:
param.xsl, modules/head.xsl

Synopsis
 |$output-media := 'screen'

Description

 The $output-media parameter
identifies the intended output medium, screen or
print. It can be used to make conditional
transformations.

$oxy-markup
$oxy-markup — Is Oxygen change tracking markup rendered?

Parameter:
{}oxy-markup

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$oxy-markup := 'false'

Description

 If $oxy-markup is true, then
the change tracking processing instructions that Oxygen inserts into
the document will be transformed into elements marked with CSS classes
for rendering in the output.

 Rendering Oxygen change markup can be specified on a document-by-document
basis with a db
 processing instruction.
If the oxy-markup

pseudo-attribute is true, the markup will be rendered.
This processing instruction must be in the info element of the document
element.

$page-style
$page-style — Select the page style.

Parameter:
{}page-style

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$page-style as xs:string := 'article'

Description

 This value selects the page style. The page style is reflected
in the class attribute on the root
html element.
It is then used by the CSS stylesheets.
A page style of “value” will be added to
the class attribute as “value-style”.

 The CSS print stylesheets support two styles:
article and book. The book style
places new components on a right-hand page and adjusts the inner margin
for binding.

$pagetoc-dynamic
$pagetoc-dynamic — Make the on-page ToC dynamic?

Parameter:
{}pagetoc-dynamic

Defined in:
param.xsl

Used in:
main.xsl, param.xsl

Synopsis
 |$pagetoc-dynamic := 'true'

Description

 If this value is true, and the on-page
ToC is displayed, then it will be updated dynamically to reflect the
readers position. This has two consequences. First, the section titles
that are currently in view will be highlighted. The default
highlighting is to make them a little darker and place a bullet next
to them. The highlighting can be changed with CSS. Second, a clickable
symbol is added in the upper left corner. This lets the reader toggle
between dynamic, non-dynamic, and hidden views.

 If the on-page ToC is not dynamic, then no highlighting is performed.

 The clickable symbols can be changed as well, but it requires adding
a bit more JavaScript to the page. Ensure that your code runs first and set the
following properties:

 1 |window.DocBook = {};
 |window.DocBook.pagetoc = {};
 |window.DocBook.pagetoc.decorated = "ON";
 |window.DocBook.pagetoc.plain = "OFF";
5 |window.DocBook.pagetoc.hidden = "HIDDEN";

 The values can be strings or markup, such as an
img element.

$pagetoc-elements
$pagetoc-elements — Elements that should have an on-page ToC.

Parameter:
{}pagetoc-elements

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl

Synopsis
 |$pagetoc-elements := ''

Description

 This parameter is a space-separated list of element names (local names).
An on-page ToC will be generated for
elements with these names.

$pagetoc-js
$pagetoc-js — Script to support the on-page ToC.

Parameter:
{}pagetoc-js

Defined in:
param.xsl

Used in:
main.xsl, param.xsl

Synopsis
 |$pagetoc-js := 'js/pagetoc.js'

Description

 If the on-page ToC is enabled, a link to this script will be
added to the document. This script must contain the JavaScript
necessary to support the on-page ToC feature.

$paper-size
$paper-size — Select the paper style.

Parameter:
{}paper-size

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$paper-size as xs:string? := ()

Description

 This value selects the paper size. The paper size is reflected
in the class attribute on the root
html element.
It is then used by the CSS stylesheets.

 The CSS print stylesheets support three page sizes:
A4, A5, and (US)
Letter. Additional sizes can be implemented
in CSS.

$persistent-toc
$persistent-toc — Generate a persistent Table of Contents?

Parameter:
{}persistent-toc

Defined in:
param.xsl

Used in:
main.xsl, param.xsl, modules/head.xsl, modules/chunk-cleanup.xsl, modules/chunk-output.xsl

Synopsis
 |$persistent-toc := 'false'

Description

 If this value is true, then a
persistent ToC will be generated.

$persistent-toc-css
$persistent-toc-css — Persistent ToC CSS.

Parameter:
{}persistent-toc-css

Defined in:
param.xsl

Used in:
param.xsl, modules/head.xsl

Synopsis
 |$persistent-toc-css := 'css/docbook-toc.css'

Description

 If the persistent ToC popup is enabled, a link to this
CSS file will be added to the HTML HEAD.

$persistent-toc-filename
$persistent-toc-filename — Name of file that holds the persistent ToC.

Parameter:
{}persistent-toc-filename

Defined in:
param.xsl

Used in:
param.xsl, modules/chunk-output.xsl

Since:
2.0.2

Synopsis
 |$persistent-toc-filename as xs:string? := 'persistent-toc.html'

Description

 When the $persistent-toc parameter
is true, the
persistent ToC will be stored
either in each HTML file, or in a single file that is loaded
dynamically. If $persistent-toc-filename is not empty,
then it will be used as the name for an external file that will be loaded
when the ToC is requested.

$persistent-toc-js
$persistent-toc-js — Script to support the persistent ToC.

Parameter:
{}persistent-toc-js

Defined in:
param.xsl

Used in:
main.xsl, param.xsl

Synopsis
 |$persistent-toc-js := 'js/persistent-toc.js'

Description

 If the persistent ToC is enabled, a link to this script will be
added to the document. This script must contain the JavaScript
necessary to support the persistent ToC feature.

$persistent-toc-search
$persistent-toc-search — Generate a search box in the persistent ToC.

Parameter:
{}persistent-toc-search

Defined in:
param.xsl

Used in:
param.xsl, modules/chunk-output.xsl

Synopsis
 |$persistent-toc-search := 'true'

Description

 If this value is true, then a search box
is added to the top of the persistent Table of Contents (ToC).
Any string typed into this search box will be used to filter the entries
shown below it.

 The filter is a case-insensitive regular expression match against the text of
each line in the ToC where arbitrary characters may occur anywhere in the string.
In other words, the text “cat” will generate the regular expression “c.*a.*t.*” for
the purpose of searching.

 This setting has no effect if $persistent-toc is
false.

$personal-name-style
$personal-name-style — The style for formatting personal names.

Parameter:
{}personal-name-style

Defined in:
param.xsl

Used in:
param.xsl, modules/info.xsl

Synopsis
 |$personal-name-style := ()

Description

 The stylesheets can format personal names in a variety of ways.
This is usually locale dependent. If $personal-name-style
is specified, it wil be used in preferance to the locale dependent style.
See
t:person-name.

$pixels-per-inch
$pixels-per-inch — The number of pixels per inch.

Parameter:
{}pixels-per-inch

Defined in:
param.xsl

Used in:
param.xsl, modules/units.xsl

Used by:
$v:unit-scale

Synopsis
 |$pixels-per-inch := 96.0

Description

 If the stylesheets need to convert between absolute and
relative units (see Section 5.2, “Lengths and units”), this value is used
to convert lengths into pixels. If $pixels-per-inch has
the value 96, then 25% of a 6in width is 144px.

$procedure-step-numeration
$procedure-step-numeration — Numeration for nested procedure steps.

Parameter:
{}procedure-step-numeration

Defined in:
param.xsl

Used in:
param.xsl, modules/functions.xsl

Used by:
f:step-numeration()

Synopsis
 |$procedure-step-numeration := '1aiAI'

Description

 The $procedure-step-numeration parameter
controls the numeration style of nested steps and substeps in a procedure.
Steps at the top level will use the numeration style of the first character
in $procedure-step-numeration, substeps at the second-level
will use the numeration style of the second character in the string, etc.
If the step depth exceeds the number of characters in
the $procedure-step-numeration, selection “wraps back around”
to the first character.

 In other words, if the string is “1ai”:
steps at the first, fourth, seventh, tenth, etc. depth will have arabic numeration.
Steps at the second, fifth, eight, eleventh, etc. depth will have lowercase alpha
numeration, etc.

$productionset-lhs-rhs-separator
$productionset-lhs-rhs-separator — Separator in productions.

Parameter:
{}productionset-lhs-rhs-separator

Defined in:
param.xsl

Used in:
param.xsl, modules/programming.xsl

Synopsis
 |$productionset-lhs-rhs-separator := ':='

Description

 A productionset consists of non-terminals on the
“left hand side” (LHS) and the productions that they expand to on the
“right hand side” (RHS). When formatted, this string will be used as
the separator between the left- and right-hand sides.

$profile-arch
$profile-arch — Profile tokens for “arch”

Parameter:
{}profile-arch

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$profile-arch := ''

Description

 The tokens (separated by $profile-separator)
specified for $profile-arch are matched against
the values in the arch attribute. See Section 2.7, “Effectivity attributes and profiling”.

$profile-audience
$profile-audience — Profile tokens for “audience”

Parameter:
{}profile-audience

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$profile-audience := ''

Description

 The tokens (separated by $profile-separator)
specified for $profile-audience are matched against
the values in the audience attribute. See Section 2.7, “Effectivity attributes and profiling”.

$profile-condition
$profile-condition — Profile tokens for “condition”

Parameter:
{}profile-condition

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$profile-condition := ''

Description

 The tokens (separated by $profile-separator)
specified for $profile-condition are matched against
the values in the condition attribute. See Section 2.7, “Effectivity attributes and profiling”.

$profile-conformance
$profile-conformance — Profile tokens for “conformance”

Parameter:
{}profile-conformance

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$profile-conformance := ''

Description

 The tokens (separated by $profile-separator)
specified for $profile-conformance are matched against
the values in the conformance attribute. See Section 2.7, “Effectivity attributes and profiling”.

$profile-lang
$profile-lang — Profile tokens for “xml:lang”

Parameter:
{}profile-lang

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$profile-lang := ''

Description

 The tokens (separated by $profile-separator)
specified for $profile-lang are matched against
the values in the xml:lang attribute. See Section 2.7, “Effectivity attributes and profiling”.

$profile-os
$profile-os — Profile tokens for “os”

Parameter:
{}profile-os

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$profile-os := ''

Description

 The tokens (separated by $profile-separator)
specified for $profile-os are matched against
the values in the os attribute. See Section 2.7, “Effectivity attributes and profiling”.

$profile-outputformat
$profile-outputformat — Profile tokens for “outputformat”

Parameter:
{}profile-outputformat

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$profile-outputformat := ''

Description

 The tokens (separated by $profile-separator)
specified for $profile-outputformat are matched against
the values in the outputformat attribute. See Section 2.7, “Effectivity attributes and profiling”.

$profile-revision
$profile-revision — Profile tokens for “revision”

Parameter:
{}profile-revision

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$profile-revision := ''

Description

 The tokens (separated by $profile-separator)
specified for $profile-revision are matched against
the values in the revision attribute. See Section 2.7, “Effectivity attributes and profiling”.

$profile-revisionflag
$profile-revisionflag — Profile tokens for “revisionflag”

Parameter:
{}profile-revisionflag

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$profile-revisionflag := ''

Description

 The tokens (separated by $profile-separator)
specified for $profile-revisionflag are matched against
the values in the revisionflag attribute. See Section 2.7, “Effectivity attributes and profiling”.

$profile-role
$profile-role — Profile tokens for “role”

Parameter:
{}profile-role

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$profile-role := ''

Description

 The tokens (separated by $profile-separator)
specified for $profile-role are matched against
the values in the role attribute. See Section 2.7, “Effectivity attributes and profiling”.

$profile-security
$profile-security — Profile tokens for “security”

Parameter:
{}profile-security

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$profile-security := ''

Description

 The tokens (separated by $profile-separator)
specified for $profile-security are matched against
the values in the security attribute. See Section 2.7, “Effectivity attributes and profiling”.

$profile-separator
$profile-separator — The profile separator character.

Parameter:
{}profile-separator

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$profile-separator := ';'

Description

 The profiling parameters (and the profiling attributes) are strings. Profiling
operates on sets of tokens. The strings in each case are divided into tokens by separating them
at the $profile-separator character. Common values for separator include
“;” and “ “ (space). See Section 2.7, “Effectivity attributes and profiling”.

$profile-userlevel
$profile-userlevel — Profile tokens for “userlevel”

Parameter:
{}profile-userlevel

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$profile-userlevel := ''

Description

 The tokens (separated by $profile-separator)
specified for $profile-userlevel are matched against
the values in the userlevel attribute. See Section 2.7, “Effectivity attributes and profiling”.

$profile-vendor
$profile-vendor — Profile tokens for “vendor”

Parameter:
{}profile-vendor

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$profile-vendor := ''

Description

 The tokens (separated by $profile-separator)
specified for $profile-vendor are matched against
the values in the vendor attribute. See Section 2.7, “Effectivity attributes and profiling”.

$profile-wordsize
$profile-wordsize — Profile tokens for “wordsize”

Parameter:
{}profile-wordsize

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$profile-wordsize := ''

Description

 The tokens (separated by $profile-separator)
specified for $profile-wordsize are matched against
the values in the wordsize attribute. See Section 2.7, “Effectivity attributes and profiling”.

$qandadiv-default-toc
$qandadiv-default-toc — Generate a table-of-contents for qandadiv elements?

Parameter:
{}qandadiv-default-toc

Defined in:
param.xsl

Used in:
param.xsl, modules/blocks.xsl

Synopsis
 |$qandadiv-default-toc := $qandaset-default-toc

Description

 If this parameter is true, by default a table-of-contents will
be generated at the beginning of each qandadiv.

$qandaset-default-label
$qandaset-default-label — The default label for qandaset elements.

Parameter:
{}qandaset-default-label

Defined in:
param.xsl

Used in:
param.xsl, modules/titles.xsl, modules/gentext.xsl, modules/xref.xsl

Synopsis
 |$qandaset-default-label := 'number'

Description

 Question and answers can be rendered with a few different labeling styles.
This parameter selects the default style.

$qandaset-default-toc
$qandaset-default-toc — Generate a table-of-contents for qandaset elements?

Parameter:
{}qandaset-default-toc

Defined in:
param.xsl

Used in:
param.xsl, modules/blocks.xsl

Used by:
$qandadiv-default-toc

Synopsis
 |$qandaset-default-toc := 'true'

Description

 If this parameter is true, by default a table-of-contents will
be generated at the beginning of each qandaset.

$refentry-generate-name
$refentry-generate-name — Use “Name” as the title of a refentry
 .

Parameter:
{}refentry-generate-name

Defined in:
param.xsl

Used in:
param.xsl, modules/refentry.xsl

Synopsis
 |$refentry-generate-name := true()

Description

 If $refentry-generate-name is true, the
title of the refentry page will be the word “Name”. Otherwise it will
be the title of the subject of the reference page. Generally, exactly one
of $refentry-generate-name or
$refentry-generate-title should
be true.

$refentry-generate-title
$refentry-generate-title — Use the subject of the page as the title of a refentry
 .

Parameter:
{}refentry-generate-title

Defined in:
param.xsl

Used in:
param.xsl, modules/refentry.xsl

Synopsis
 |$refentry-generate-title := true()

Description

 If $refentry-generate-title is true, the
title of the refentry page will be the subject of the page (the
refentrytitle, refdescriptor, or the first
refname). Generally, exactly one
of $refentry-generate-name or
$refentry-generate-title should
be true.

$relax-ng-grammar
$relax-ng-grammar — Validation grammar.

Parameter:
{}relax-ng-grammar

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$relax-ng-grammar as xs:string? := ()

Description

 If $relax-ng-grammar is provided, then the
$v:standard-transforms will validate the document
against
the provided grammar.

$resource-base-uri
$resource-base-uri — Base URI of additional resources.

Parameter:
{}resource-base-uri

Defined in:
param.xsl

Used in:
main.xsl, param.xsl, modules/variable.xsl, modules/head.xsl

Used by:
$v:highlight-js-head-elements, $v:prism-js-head-elements

Synopsis
 |$resource-base-uri := './'

Description

 Web pages rely on additional resources (CSS, JavaScript, etc.) to
render properly. The $resource-base-uri is used
as the base URI for these resources.

$revhistory-style
$revhistory-style — Rendering style for revhistory elements.

Parameter:
{}revhistory-style

Defined in:
param.xsl

Used in:
param.xsl, modules/blocks.xsl

Synopsis
 |$revhistory-style := 'table'

Description

 The revhistory element can be rendered as a list or a table.
If $revhistory-style is
“table>”, it will be rendered using the tabular
style, if it is “list”, it will be rendered
using the list style.

 Example 1, “An example of char alignment” shows an example of a revhistory element.

 |<revhistory>
 |<revision>
 |<revnumber>1.0.0</revnumber>
 |<date>2020-07-27</date>
 |<author>
 |<personname>Norman Tovey-Walsh</personname>
 |</author>
 |<revdescription>
 |<para>Version 1.0.0 released.</para>
 |</revdescription>
 |</revision>
 |<revision>
 |<revnumber>0.0.1</revnumber>
 |<date>2020-05-08T06:24:00Z</date>
 |<author>
 |<personname>Norman Tovey-Walsh</personname>
 |</author>
 |<revremark>Development begins.</revremark>
 |</revision>
 |</revhistory>

Example 1. An example of char alignment

 It is shown rendered as a table in Figure 1, “An example of revhistory rendered as a table”.

 Revision History
	1.0.0	27 Jul 2020	Norman Tovey-Walsh	
 Version 1.0.0 released.

	0.0.1	06:24 08 May 2020	Norman Tovey-Walsh	Development begins.

Figure 1. An example of revhistory rendered as a table

 The same revhistory is shown rendered as a list in
Figure 2, “An example of revhistory rendered as a list”.

 Revision History
	1.0.0, 27 Jul 2020, Norman Tovey-Walsh

 Version 1.0.0 released.

	0.0.1, 06:24 08 May 2020, Norman Tovey-Walsh
Development begins.

Figure 2. An example of revhistory rendered as a list

 The default style specified by
$revhistory-style can be overridden on a
case-by-case basis with the
db
 processing instruction using the
revhistory-style
 pseudo-attribute.

$section-numbers
$section-numbers — Are sections numbered?

Parameter:
{}section-numbers

Defined in:
param.xsl

Used in:
param.xsl, modules/titles.xsl

Used by:
$v:title-groups

Synopsis
 |$section-numbers as xs:string := '1'

Description

 If $section-numbers
 is true,
sections that do not have
an explicit label will be labeled with their section number.

 See Section 3.5, “Controlling numeration”.

$section-numbers-inherit
$section-numbers-inherit — Include ancestor section labels?

Synopsis
 |$section-numbers-inherit := 'true'

Description

 This parameter is no longer used. See Section 3.5, “Controlling numeration”.

$section-toc-depth
$section-toc-depth — Depth of sections in the table of contents.

Parameter:
{}section-toc-depth

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl

Synopsis
 |$section-toc-depth := 'unbounded'

Description

 When generating a Table of Contents, the
$section-toc-depth determines the maximum depth
of section to include. See also $generate-toc
and $generate-nested-toc.

 The $section-toc-depth should be a positive
integer or the token unbounded to indicate arbitrary
depth.

$sections-inherit-from
$sections-inherit-from — Identifies what inherited numeration applies to sections.

Parameter:
{}sections-inherit-from

Defined in:
param.xsl

Used in:
param.xsl, modules/titles.xsl

Synopsis
 |$sections-inherit-from as xs:string := 'section'

Description

 If section numbers inherit from their ancestors, these are the ancestors they
inherit from.

 See Section 3.5, “Controlling numeration”.

$sections-number-from
$sections-number-from — Identifies where (top-level) section numeration begins.

Parameter:
{}sections-number-from

Defined in:
param.xsl

Used in:
param.xsl, modules/numbers.xsl

Synopsis
 |$sections-number-from as xs:string := 'component'

Description

 Top-level section numbers (if sections are numbered) begin from here.

 This parameter only applies to top-level sections. Nested sections are
always numbered sequentially within their parent section.

 See Section 3.5, “Controlling numeration”.

 	
 root

	Top-level sections are numbered from the beginning of the document.

	
 set

	Top-level sections are numbered from their nearest ancestor set.

	
 book

	Top-level sections are numbered from their nearest ancestor book.

	
 division

	Top-level sections are numbered from their nearest ancestor division.

	
 component

	Top-level sections are numbered from their parent component.

$segmentedlist-style
$segmentedlist-style — Choose segmented list presentation style.

Parameter:
{}segmentedlist-style

Defined in:
param.xsl

Used in:
param.xsl, modules/lists.xsl

Synopsis
 |$segmentedlist-style := 'table'

Description

 Segmented lists can be presented in two different ways: as lists
or tables. The default is determined by
$segmentedlist-style which must be either
“list” or “table”.

 Consider the following segmentedlist of (some of) the
US states and their capitals:

 1 |<segmentedlist>
 |<segtitle>State</segtitle>
 |<segtitle>Capital</segtitle>
 |<seglistitem>
 5 |<seg>Alabama</seg>
 |<seg>Montgomery</seg>
 |</seglistitem>
 |<seglistitem>
 |<seg>Alaska</seg>
10 |<seg>Anchorage</seg>
 |</seglistitem>
 |<seglistitem>
 |<seg>Arkansas</seg>
 |<seg>Little Rock</seg>
15 |</seglistitem>
 |</segmentedlist>

 This can be rendered as a table, as shown in
Figure 1, “Segmented list formatted as a table”:

 	State	Capital
	Alabama	Montgomery
	Alaska	Anchorage
	Arkansas	Little Rock

Figure 1. Segmented list formatted as a table

 Or as a list, as shown in
Figure 2, “Segmented list formatted as a list”:

 State: Alabama
Capital: Montgomery

State: Alaska
Capital: Anchorage

State: Arkansas
Capital: Little Rock

Figure 2. Segmented list formatted as a list

 The style can be selected on a per-list basis with the
db
 processing instruction using the
segmentedlist-style
 pseudo-attribute.
A table-summary
 pseudo-attribute is also provided
for the table summary in tabular presentations.

$sets-inherit-from
$sets-inherit-from — Identifies what inherited numeration applies to sets.

Parameter:
{}sets-inherit-from

Defined in:
param.xsl

Used in:
param.xsl, modules/titles.xsl

Synopsis
 |$sets-inherit-from as xs:string := ''

Description

 If set numbers inherit from their ancestors, these are the ancestors they
inherit from.

 See Section 3.5, “Controlling numeration”.

$sets-number-from
$sets-number-from — Identifies where set numeration begins.

Parameter:
{}sets-number-from

Defined in:
param.xsl

Used in:
param.xsl, modules/numbers.xsl

Synopsis
 |$sets-number-from as xs:string := 'set'

Description

 Set numbers (if sets are numbered) begin from here.

 See Section 3.5, “Controlling numeration”.

 	
 root

	Sets are numbered from the beginning of the document.

	
 set

	Sets are numbered from their parent set.

$show-remarks
$show-remarks — Show remark elements?

Parameter:
{}show-remarks

Defined in:
param.xsl

Used in:
param.xsl, modules/blocks.xsl

Synopsis
 |$show-remarks := 'false'

Description

 The remark element is useful for editorial comments
and other notes that are not intended to appear in the final publication.
If $show-remarks
 is true, then
they will be included in the transformed result. Otherwise, they are
omitted.

$sidebar-as-aside
$sidebar-as-aside — Render sidebar as an
 aside?

Parameter:
{}sidebar-as-aside

Defined in:
param.xsl

Used in:
param.xsl, modules/blocks.xsl

Synopsis
 |$sidebar-as-aside := false()

Description

 The HTML
aside element has
specific semantics. Whether or not those semantics are consistent with
the way sidebar is used in your DocBook documents is an
open question. If $sidebar-as-aside
 is true, sidebar elements will be
rendered as HTML aside elements,
otherwise they will be
rendered as div elements.

$sort-collation
$sort-collation — Sorting collation.

Parameter:
{}sort-collation

Defined in:
param.xsl

Used in:
param.xsl, modules/glossary.xsl

Synopsis
 |$sort-collation := 'http://www.w3.org/2005/xpath-functions/collation/html-ascii-case-insensitive'

Description

 When items (the terms in a glossary, for example) are sorted,
this collation is used.

$table-accessibility
$table-accessibility — Accessibility settings for tables.

Parameter:
{}table-accessibility

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl

Synopsis
 |$table-accessibility as xs:string := 'summary details'

Description

 The $table-accessibility parameter
determines how accessibility features are added to CALS
tables*.

 The value of this parameter is a space-separated list of strings. If the list
contains:

 	summary
	A summary attribute will be added to the table if an
alt element or a textobject containing a single
phrase is available.

	details
	A details element will be added if there is
a textobject containing anything other than a single
phrase available.

 The list may contain either or both values. If other values are present,
they are ignored.

 See Example 1, “An example of table accessibility”.

 |<table frame="all">
 | <title>Square numbers</title>
 | <alt>The first four whole numbers
 |and their squares.</alt>
 | <textobject>
 | <para>This table shows the first four whole numbers
 |and their squares. (The square of a number is that
 |number times itself.)
 |</para>
 | </textobject>
 | <tgroup cols="2" colsep="1" rowsep="1">
 | <thead>
 | <row>
 | <entry>
 | <inlineequation>
 | <mathphrase>n</mathphrase>
 | </inlineequation>
 | </entry>
 | <entry>
 | <inlineequation>
 | <mathphrase>n<superscript>2</superscript>
 | </mathphrase>
 | </inlineequation>
 | </entry>
 | </row>
 | </thead>
 | <tbody>
 | <row>
 | <entry>1</entry>
 | <entry>1</entry>
 | </row>
 | <row>
 | <entry>2</entry>
 | <entry>4</entry>
 | </row>
 | <row>
 | <entry>3</entry>
 | <entry>9</entry>
 | </row>
 | <row>
 | <entry>4</entry>
 | <entry>16</entry>
 | </row>
 | </tbody>
 | </tgroup>
 |</table>

Example 1. An example of table accessibility

 One possible rendering of such an example:

 Table 1. Square numbers
	
 n
 	
 n2

	1	1
	2	4
	3	9
	4	16

 Inspection of the HTML will reveal that the summary attribute
is present on the element that wraps the table and a
details element precedes it. These may or may not be
rendered by your user agent depending on its accessibility features and
settings.

 See also $mediaobject-accessibility.

*
This parameter does not apply to HTML tables because
the HTML table model supports these features directly.

$table-footnote-numeration
$table-footnote-numeration — How are footnotes numbered in tables?

Parameter:
{}table-footnote-numeration

Defined in:
param.xsl

Used in:
param.xsl, modules/footnotes.xsl, modules/chunk-cleanup.xsl

Synopsis
 |$table-footnote-numeration := ('a')

Description

 There are different styles of footnote numeration. This
parameter contains a list of the symbols that should be used to mark
footnotes in tables. If there could be more footnotes than symbols in
the list, the last symbol in the list must be a character suitable for
formatting numbers. See $footnote-numeration.

 Footnote number begins with the first symbol in each table.

$theme-picker
$theme-picker — Allow users to select themes?

Parameter:
{}theme-picker

Defined in:
param.xsl

Used in:
main.xsl, param.xsl

Synopsis
 |$theme-picker as xs:string := 'false'

Description

 If this parameter is true, a JavaScript
“theme picker” will be included in the document. This is provided through
a
 hamburger menu
 in the upper-right
corner. Given that one of the ostensible goals of providing themes
is accessibility, it’s somewhat ironic that this feature is not especially
accessible. Suggestions welcome.

$transclusion-id-fixup
$transclusion-id-fixup — Transclusion ID fixup.

Parameter:
{}transclusion-id-fixup

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$transclusion-id-fixup as xs:string := 'none'

Description

 These stylesheets attempt to implement Transclusion.
This parameter specifies the ID fixup.

$transclusion-link-scope
$transclusion-link-scope — Transclusion link scope.

Parameter:
{}transclusion-link-scope

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$transclusion-link-scope as xs:string := 'global'

Description

 These stylesheets attempt to implement Transclusion.
This parameter specifies the link scope.

$transclusion-prefix-separator
$transclusion-prefix-separator — Transclusion separator.

Parameter:
{}transclusion-prefix-separator

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$transclusion-prefix-separator as xs:string := '---'

Description

 These stylesheets attempt to implement Transclusion.
This parameter provides the separator for auto-generated prefixes.

$transclusion-suffix
$transclusion-suffix — Transclusion suffix.

Parameter:
{}transclusion-suffix

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$transclusion-suffix as xs:string := ''

Description

 These stylesheets attempt to implement Transclusion.
This parameter specifies the suffix used for transcluded IDs.

$transform-after
$transform-after — Transform the process document.

Parameter:
{}transform-after

Defined in:
param.xsl

Used in:
docbook.xsl, param.xsl

Used by:
t:docbook

Synopsis
 |$transform-after := ()

Description

 Identifies the transform(s) that should be applied after the document
has been transformed to HTML. See Section 5.7, “The pre- and post-processing pipeline”.

$transform-before
$transform-before — Transform the preprocessed document.

Parameter:
{}transform-before

Defined in:
param.xsl

Used in:
docbook.xsl, param.xsl

Synopsis
 |$transform-before := ()

Description

 Identifies the transform(s) that should be applied before the document
is transformation into HTML (but after the standard transformations).
See Section 5.7, “The pre- and post-processing pipeline”.

$transform-original
$transform-original — Transform the original document.

Parameter:
{}transform-original

Defined in:
param.xsl

Used in:
docbook.xsl, param.xsl

Synopsis
 |$transform-original := ()

Description

 Identifies the transform(s) that should be applied to the original
document. See Section 5.7, “The pre- and post-processing pipeline”.

$unwrap-paragraphs
$unwrap-paragraphs — Attempt to unwrap paragraphs that contain block elements?

Parameter:
{}unwrap-paragraphs

Defined in:
param.xsl

Used in:
param.xsl, modules/blocks.xsl

Since:
2.0.13

Synopsis
 |$unwrap-paragraphs as xs:string := 'false'

Description

 DocBook allows “block elements” (tables, figures, etc.) inside paragraphs
or between paragraphs. The question of whether or not a table, figure, etc. is part
of a paragraph is an editorial one. If you put the block element in the
DocBook para, it will be in the resulting HTML
p element.

 Except, that’s not valid HTML. HTML deprives you of the editorial choice.
If $unwrap-paragraphs
 is true, the
stylesheets will attempt to unwrap block elements inside paragraphs, producing
a sequence of paragraphs and blocks.

 Note that with this option, a
p element identified
with an ID attribute is not
guaranteed to contain all of the content that the DocBook paragraph
contained.

$use-docbook-css
$use-docbook-css — Create links to standard DocBook CSS stylesheets?

Parameter:
{}use-docbook-css

Defined in:
param.xsl

Used in:
param.xsl, modules/head.xsl

Synopsis
 |$use-docbook-css as xs:string := 'true'

Description

 If this parameter is true, then the
output will contain links to the standard DocBook CSS stylesheets:

 |<link href="{$resource-base-uri}css/docbook.css"
 |rel="stylesheet" media="screen"/>
 |<link href="{$resource-base-uri}css/docbook-paged.css"
 |rel="stylesheet" media="print"/>

 If $use-minified-css is true, then the links will
be to minified CSS stylesheets.
You can quickly disable all of these links by setting this
parameter to false. There are a number of other stylesheets that
are only conditionally included,
see $verbatim-syntax-highlight-css and
$persistent-toc-css. User defined stylesheets
are added with $user-css-links.

$use-minified-css
$use-minified-css — Create links to minified CSS?

Parameter:
{}use-minified-css

Defined in:
param.xsl

Used in:
param.xsl, modules/head.xsl

Synopsis
 |$use-minified-css as xs:string := 'false'

Description

 If this parameter is true, then the
links to standard DocBook CSS stylesheets will be to minified versions
instead of the “ordinary” versions. This does not effect links in
$user-css-links.

$user-css-links
$user-css-links — A list of user-defined CSS stylesheets.

Parameter:
{}user-css-links

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl

Synopsis
 |$user-css-links := ()

Description

 This parameter is a space separated list of CSS stylesheets.
Each will be added to the output after the standard stylesheets.

$variablelist-termlength-threshold
$variablelist-termlength-threshold — Threshold value for considering varlistentry terms “long”

Parameter:
{}variablelist-termlength-threshold

Defined in:
param.xsl

Used in:
param.xsl, modules/attributes.xsl

Synopsis
 |$variablelist-termlength-threshold := 20

Description

 If the sum of the lengths of the term elements in a varlistentry
exceeds this threshold, the variable list will have a “long” class.
This can be used in CSS or in other downstream processing to decide whether or not the
terms and their corresponding list items should be aligned side-by-side.

 The length computation is just the number of characters. No attempt is made to
adjust for wide or narrow characters.

$verbatim-callouts
$verbatim-callouts — A list determining how callouts are processed.

Parameter:
{}verbatim-callouts

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl

Used by:
$v:verbatim-callouts

Synopsis
 |$verbatim-callouts as xs:string := 'linecolumn lines lineranges-first'

Description

 The $verbatim-callouts parameter is a space separated
list of token values. These token values determine which kinds of callouts in a
programlistingco or screenco will be processed and how.

 	
 linecolumn

	If “linecolumn” appears in the list then
callouts that have a units attribute of linecolumn and specify both a line and column
will be processed. A callout marker will be placed on the line and
before the column indicated. Additional lines and columns will be added to the
listing if necessary.

	
 lines

	If “lines” appears in the list then callouts
that have a units attribute of linecolumn and specify only a line will be
processed. A callout marker will be placed on the line and before
the $callout-default-column.

	
 lineranges-first

	If “lineranges-first” appears in the list
then callouts that have a units attribute of linerange will be processed. A callout marker
will be placed on the first line and before the
$callout-default-column.
Only one of lineranges-first and
lineranges-all should be specified.

	
 lineranges-all

	If “lineranges-first” appears in the list
then callouts that have a units attribute of linerange will be processed. A callout marker
will be placed on every line in the range before the
$callout-default-column.
Only one of lineranges-first and
lineranges-all should be specified.

 There is no support for areas with a units value of
“calspair” or “linecolumnpair”.
They are always ignored.

$verbatim-line-style
$verbatim-line-style — List of verbatim elements to be rendered in the line style.

Parameter:
{}verbatim-line-style

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl

Used by:
$v:verbatim-line-style

Synopsis
 |$verbatim-line-style := 'programlisting programlistingco
 | screen screenco synopsis'

Description

 This parameter is a space-separated list of element names (local names).
Verbatim elements that appear in this list will be formatted using the line
style by default. For a discussion of verbatim elements and styles, see
Section 5.3, “Verbatim styles”.

$verbatim-number-every-nth
$verbatim-number-every-nth — Line numbering frequency.

Parameter:
{}verbatim-number-every-nth

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl

Used by:
$v:verbatim-number-every-nth

Synopsis
 |$verbatim-number-every-nth := 5

Description

 When formatting verbatim environments with line numbers,
every $verbatim-number-every-nth line is numbered.

$verbatim-number-first-line
$verbatim-number-first-line — Number the first line?

Parameter:
{}verbatim-number-first-line

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl

Used by:
$v:verbatim-number-first-line

Synopsis
 |$verbatim-number-first-line := 'true'

Description

 When formatting verbatim environments with line numbers,
if $verbatim-number-first-line line is true,
the first line will be numbered even it isn’t one of
the $verbatim-number-every-nth lines.

$verbatim-number-minlines
$verbatim-number-minlines — Shortest listing to number.

Parameter:
{}verbatim-number-minlines

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl

Used by:
$v:verbatim-number-minlines

Synopsis
 |$verbatim-number-minlines := '5'

Description

 When formatting verbatim environments with line numbers,
environments less than
$verbatim-number-minlines in length will
not be numbered.

$verbatim-number-separator
$verbatim-number-separator — Separator between line numbers and lines.

Parameter:
{}verbatim-number-separator

Defined in:
param.xsl

Used in:
param.xsl, modules/verbatim.xsl

Synopsis
 |$verbatim-number-separator := '|'

Description

 When formatting verbatim environments with line numbers,
this separator is inserted (wrapped in a
span with a
class of nsep) between
the line number and the text of the line.

 In most presentations, CSS prevents the nsep
from being displayed; instead, a CSS border is used as a separator.
The $verbatim-number-separator is most often seen
with text-only browsers.

$verbatim-numbered-elements
$verbatim-numbered-elements — Verbatim environments that should be numbered.

Parameter:
{}verbatim-numbered-elements

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl

Used by:
$v:verbatim-numbered-elements

Synopsis
 |$verbatim-numbered-elements := 'programlisting programlistingco'

Description

 This parameter is a space-separated list of element names (local names).
Verbatim elements that appear in this list will be formatted with line numbers.
For a discussion of verbatim elements and styles, see
Section 5.3, “Verbatim styles”.

$verbatim-plain-style
$verbatim-plain-style — List of verbatim elements to be rendered in the plain style.

Parameter:
{}verbatim-plain-style

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl

Used by:
$v:verbatim-plain-style

Synopsis
 |$verbatim-plain-style as xs:string := 'address literallayout funcsynopsisinfo classsynopsisinfo'

Description

 This parameter is a space-separated list of element names (local names).
Verbatim elements that appear in this list will be formatted using the plain
style by default. For a discussion of verbatim elements and styles, see
Section 5.3, “Verbatim styles”.

 See also $v:verbatim-plain-style.

$verbatim-space
$verbatim-space — The space character to use when padding verbatim lines.

Parameter:
{}verbatim-space

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl

Used by:
$v:verbatim-space

Synopsis
 |$verbatim-space := ' '

Description

 When a verbatim line has to be padded in order to get a callout to appear in
the correct column, this character will be used as the padding character.
For a discussion of verbatim elements and styles, see
Section 5.3, “Verbatim styles”.

$verbatim-style-default
$verbatim-style-default — The default verbatim style.

Parameter:
{}verbatim-style-default

Defined in:
param.xsl

Used in:
param.xsl, modules/verbatim.xsl

Synopsis
 |$verbatim-style-default := 'lines'

Description

 The default verbatim style for verbatim environments that do not
specify a style explicitly. For a discussion of verbatim
elements and styles, see Section 5.3, “Verbatim styles”.

$verbatim-syntax-highlight-css
$verbatim-syntax-highlight-css — Stylesheet for syntax highlighting.

Parameter:
{}verbatim-syntax-highlight-css

Defined in:
param.xsl

Used in:
param.xsl, modules/head.xsl

Synopsis
 |$verbatim-syntax-highlight-css := 'css/pygments.css'

Description

 If the $verbatim-syntax-highlight-languages parameter
is non-empty, then this stylesheet will be linked from the HTML document. The purpose
of this stylesheet is to provide styling (fonts, colors, etc.) for syntax highlighted
verbatim listings.

$verbatim-syntax-highlight-languages
$verbatim-syntax-highlight-languages — Languages for which syntax highlighting should be performed.

Parameter:
{}verbatim-syntax-highlight-languages

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl

Used by:
$v:verbatim-syntax-highlight-languages

Synopsis
 |$verbatim-syntax-highlight-languages := 'python perl html xml xslt xquery javascript json'

Description

 This parameter is a space-separated list of programming languages.
If the Pygments

syntax highlighter is available, the stylesheets can apply syntax
highlighting to program listings.
If the program listing language (as specified in the language
attribute) appears in the list of
$verbatim-syntax-highlight-languages, syntax highlighting
will be attempted.

 ⓘ
Note
Syntax highlighting is incompatible with inline markup in the
program listing; the embedded markup will be ignored.

 The examples in this guide show syntax highlighting applied to XML.

 See also $v:verbatim-syntax-highlight-options
and $v:verbatim-syntax-highlight-pygments-options.

$verbatim-syntax-highlighter
$verbatim-syntax-highlighter — Selects the syntax highlighter.

Parameter:
{}verbatim-syntax-highlighter

Defined in:
param.xsl

Used in:
param.xsl, modules/head.xsl, modules/verbatim.xsl

Used by:
f:verbatim-style(), f:verbatim-highlight(), f:verbatim-numbered()

Synopsis
 |$verbatim-syntax-highlighter as xs:string := 'pygments'

Description

 This parameter specifies the syntax highlighter to use. Most of
the parameters related to syntax highlighting only work if the

 pygments
 highlighter is selected.
However, that requires running an external process which might not be
available and which, even if it is available, has an impact on
performance. Using Pygments has the advantage that the stylesheets
have more control over the process and it is available both for online
and paged media formats.

 The alternative to running an external program is to use
JavaScript to highlight the listing in the browser. This is faster at
formatting time, but limits syntax highlighting to those environments where
JavaScript is available.

 The following options are supported:

 	
 pygments

	This is the default highlighter.

	
 highlight.js

	Uses the highlight.js JavaScript library to perform
syntax highlighting. The $highlight-js-head-elements variable
determines what CSS stylesheets and JavaScript libraries are loaded for this option.

	
 prism

	Uses the Prism JavaScript library to perform
syntax highlighting. The $prism-js-head-elements variable
determines what CSS stylesheets and JavaScript libraries are loaded for this option.

	
 none

	Disables syntax highlighting but also suppresses messages about features
that are not available because syntax highlighting is disabled.

$verbatim-table-style
$verbatim-table-style — List of verbatim elements to be rendered in the table style.

Parameter:
{}verbatim-table-style

Defined in:
param.xsl

Used in:
param.xsl, modules/variable.xsl

Used by:
$v:verbatim-table-style

Synopsis
 |$verbatim-table-style := ''

Description

 This parameter is a space-separated list of element names (local names).
Verbatim elements that appear in this list will be formatted using the table
style by default. For a discussion of verbatim elements and styles, see
Section 5.3, “Verbatim styles”.

$verbatim-trim-trailing-blank-lines
$verbatim-trim-trailing-blank-lines — Trim trailing blank lines off verbatim environments?

Parameter:
{}verbatim-trim-trailing-blank-lines

Defined in:
param.xsl

Used in:
param.xsl, modules/verbatim.xsl

Used by:
f:verbatim-trim-trailing()

Synopsis
 |$verbatim-trim-trailing-blank-lines := 'true'

Description

 Trailing blank lines can be introduced into verbatim
environments in a number of ways. Transcluded text files may have
trailing blank lines, for example, and authors often put a newline
before the closing tag of an environment.

 This can produce spurious looking listings in the documentation.
If trailing newlines aren’t significant, setting
$verbatim-trim-trailing-blank-lines will cause
the stylesheets to trim blank (that is, entirely empty) lines from
the end of verbatim environments.

$warn-about-missing-localizations
$warn-about-missing-localizations — Warn about missing localization?

Parameter:
{}warn-about-missing-localizations

Defined in:
param.xsl

Used in:
param.xsl, modules/gentext.xsl

Synopsis
 |$warn-about-missing-localizations as xs:string := 'true'

Description

 If this parameter is true, then warning
messages will be issued for missing localizations.

$xlink-arclist-after
$xlink-arclist-after — Suffix used for inline rendering of a list of XLink arcs.

Parameter:
{}xlink-arclist-after

Defined in:
param.xsl

Used in:
param.xsl, modules/xlink.xsl

Synopsis
 |$xlink-arclist-after := '] '

Description

 When rendering a list of XLinks inline, this precedes the list.

$xlink-arclist-before
$xlink-arclist-before — Prefix used for inline rendering of a list of XLink arcs.

Parameter:
{}xlink-arclist-before

Defined in:
param.xsl

Used in:
param.xsl, modules/xlink.xsl

Synopsis
 |$xlink-arclist-before := ' ['

Description

 When rendering a list of XLinks inline, this precedes the list.

$xlink-arclist-sep
$xlink-arclist-sep — Link separator used when rendering a list of XLink arcs.

Parameter:
{}xlink-arclist-sep

Defined in:
param.xsl

Used in:
param.xsl, modules/xlink.xsl

Synopsis
 |$xlink-arclist-sep := ', '

Description

 When rendering a list of XLinks inline, this separates the links.

$xlink-arclist-titlesep
$xlink-arclist-titlesep — Title separator used when rendering a list of XLink arcs.

Parameter:
{}xlink-arclist-titlesep

Defined in:
param.xsl

Used in:
param.xsl, modules/xlink.xsl

Synopsis
 |$xlink-arclist-titlesep := ': '

Description

 When rendering a list of XLinks inline, this separates the link titles.

$xlink-icon-closed
$xlink-icon-closed — Icon indicating hidden XLink links.

Parameter:
{}xlink-icon-closed

Defined in:
param.xsl

Used in:
main.xsl, param.xsl

Synopsis
 |$xlink-icon-closed := ()

Description

 If the JavaScript presentation of extended XLinks is used, this
icon marks the place where a multi-ended link can be revealed. The
default icon is ▶ (▶).
See also: $xlink-icon-open.

$xlink-icon-open
$xlink-icon-open — XLink CSS.

Parameter:
{}xlink-icon-open

Defined in:
param.xsl

Used in:
main.xsl, param.xsl

Synopsis
 |$xlink-icon-open := ()

Description

 If the JavaScript presentation of extended XLinks is used, this
icon marks the place where a multi-ended link has been revealed. The
default icon is ▼ (▼).

 ⓘ
Note
The default icons are quite large compared to running text of
the same size. To compensate, they’re styled at a
font-size of 70%. If you select different icons, you may
need to adjust the font-size associated with the
xlink-arc-list class.

$xlink-js
$xlink-js — Script to support extended XLinks.

Parameter:
{}xlink-js

Defined in:
param.xsl

Used in:
main.xsl, param.xsl

Synopsis
 |$xlink-js := 'js/xlink.js'

Description

 If the extended XLinks appear in the document, a link to this
script will be added to the document. This script must contain the
JavaScript necessary to support rendering extended XLinks.

$xlink-style
$xlink-style — Presentation style for XLink extended links.

Parameter:
{}xlink-style

Defined in:
param.xsl

Used in:
param.xsl, modules/xlink.xsl

Used by:
f:xlink-style()

Synopsis
 |$xlink-style := 'document'

Description

 The stylesheets support XLink extended links. Extended links make
it possible to have one-to-many links. That is, a single link such
as DocBook [DocBook.org, DocBook on Wikipedia] may point to more than one target. Three styles are supported:

 	
 inline

	Renders a link to each target inline after the originating link.

	
 javascript

	Uses JavaScript to render the links in a drop-down menu.

	
 document

	The preceding XLink styles apply to the entire document, you cannot
specify inline presentation in some cases and JavaScript presentation in others.
However, if you specify “document” as the value for
$xlink-style, then a
db
 processing instruction in the document’s top-level info
element can be used to control the presentation. Specify the style in the
xlink-style
 pseudo-attribute.
If the document style is selected and no
processing instruction specifying a style exists, the
$xlink-style-default style will be selected.

$xlink-style-default
$xlink-style-default — Default XLink style.

Parameter:
{}xlink-style-default

Defined in:
param.xsl

Used in:
param.xsl, modules/xlink.xsl

Used by:
f:xlink-style()

Synopsis
 |$xlink-style-default := 'inline'

Description

 Specifies the default XLink style if “document”
is specified for the $xlink-style and no processing
instruction specifying a style exists.

 Must be either “inline” or “javascript”.

$xspec
$xspec — Are we running XSpec tests?

Parameter:
{}xspec

Defined in:
param.xsl

Used in:
param.xsl

Synopsis
 |$xspec as xs:string := 'false'

Description

 This parameter is only true if the stylesheets are running in
the context of the XSpec test harness. This allows tests to be crafted
such that normal variations (Saxon HE vs. EE, the version of the
stylesheets, or the current time, for example) don’t introduce spurious
differences in the results, causing tests to fail.

 II. Variables reference
Table of Contents
	$arg-choice-def-close-str, …
	$err:DYNAMIC-PROFILE-EVAL-ERROR
	$err:DYNAMIC-PROFILE-SYNTAX-ERROR
	$err:INTERNAL-HIGHLIGHT-ERROR
	$err:INTERNAL-RENUMBER-ERROR
	$err:INVALID-AREAREFS
	$err:INVALID-CALS
	$err:INVALID-CONSTRAINT
	$err:INVALID-DYNAMIC-PROFILE-ERROR
	$err:INVALID-INJECT
	$err:INVALID-NAME-STYLE
	$err:INVALID-PRODUCTIONRECAP
	$err:INVALID-RESULTS-REQUESTED
	$err:INVALID-TEMPLATE
	$err:INVALID-TRANSFORM
	$v:personal-name-styles
	$v:VERSION
	$v:VERSION-ID
	$v:admonition-icons
	$v:annotation-close
	$v:as-json
	$v:as-xml
	$v:bridgehead-map
	$v:chunk
	$v:chunk-filter-namespaces
	$v:chunk-renumber-footnotes
	$v:custom-localizations
	$v:debug
	$v:formal-object-title-placement
	$v:formalgroup-nested-object-title-placement
	$v:highlight-js-head-elements
	$v:image-nominal-height
	$v:image-nominal-width
	$v:invisible-characters
	$v:localization-base-uri
	$v:media-type-default
	$v:media-type-map
	$v:mediaobject-details-placement
	$v:mediaobject-exclude-extensions
	$v:mediaobject-input-base-uri
	$v:mediaobject-output-base-uri
	$v:nominal-page-width
	$v:olink-databases
	$v:prism-js-head-elements
	$v:standard-transforms
	$v:templates
	$v:theme-list
	$v:title-groups
	$v:title-properties
	$v:titlepage-default
	$v:toc-close
	$v:toc-open
	$v:unit-scale
	$v:user-title-groups
	$v:user-title-properties
	$v:user-xref-groups
	$v:user-xref-properties
	$v:verbatim-callouts
	$v:verbatim-line-style
	$v:verbatim-number-every-nth
	$v:verbatim-number-first-line
	$v:verbatim-number-minlines
	$v:verbatim-numbered-elements
	$v:verbatim-plain-style
	$v:verbatim-properties
	$v:verbatim-space
	$v:verbatim-syntax-highlight-languages
	$v:verbatim-syntax-highlight-options
	$v:verbatim-syntax-highlight-pygments-options
	$v:verbatim-table-style
	$v:xref-groups
	$v:xref-properties

$arg-choice-def-close-str, …
$arg-choice-def-close-str, $v:arg-choice-def-open-str, $v:arg-choice-opt-close-str, $v:arg-choice-opt-open-str, $v:arg-choice-plain-close-str, $v:arg-choice-plain-open-str, $v:arg-choice-req-close-str, $v:arg-choice-req-open-str, $v:arg-or-sep, $v:arg-rep-def-str, $v:arg-rep-norepeat-str, $v:arg-rep-repeat-str — Punctuation marks used in formatting cmdsynopsis.

Variable:
{http://docbook.org/ns/docbook/variables}arg-choice-def-close-str

{http://docbook.org/ns/docbook/variables}arg-choice-def-open-str

{http://docbook.org/ns/docbook/variables}arg-choice-opt-close-str

{http://docbook.org/ns/docbook/variables}arg-choice-opt-open-str

{http://docbook.org/ns/docbook/variables}arg-choice-plain-close-str

{http://docbook.org/ns/docbook/variables}arg-choice-plain-open-str

{http://docbook.org/ns/docbook/variables}arg-choice-req-close-str

{http://docbook.org/ns/docbook/variables}arg-choice-req-open-str

{http://docbook.org/ns/docbook/variables}arg-or-sep

{http://docbook.org/ns/docbook/variables}arg-rep-def-str

{http://docbook.org/ns/docbook/variables}arg-rep-norepeat-str

{http://docbook.org/ns/docbook/variables}arg-rep-repeat-str

Defined in:
modules/variable.xsl (12)

Used in:
modules/programming.xsl

Synopsis
 |<xsl:variable name="v:arg-choice-opt-open-str">
 | [
 |</xsl:variable>

 |<xsl:variable name="v:arg-choice-opt-close-str">
 |]
 |</xsl:variable>

 |<xsl:variable name="v:arg-choice-req-open-str">
 | {
 |</xsl:variable>

 |<xsl:variable name="v:arg-choice-req-close-str">
 | }
 |</xsl:variable>

 |<xsl:variable name="v:arg-choice-plain-open-str">
 | <xsl:text/>
 |</xsl:variable>

 |<xsl:variable name="v:arg-choice-plain-close-str">
 | <xsl:text/>
 |</xsl:variable>

 |<xsl:variable name="v:arg-choice-def-open-str">
 | [
 |</xsl:variable>

 |<xsl:variable name="v:arg-choice-def-close-str">
 |]
 |</xsl:variable>

 |<xsl:variable name="v:arg-rep-repeat-str">
 | …
 |</xsl:variable>

 |<xsl:variable name="v:arg-rep-norepeat-str">
 | <xsl:text/>
 |</xsl:variable>

 |<xsl:variable name="v:arg-rep-def-str">
 | <xsl:text/>
 |</xsl:variable>

 |<xsl:variable name="v:arg-or-sep">
 | |
 |</xsl:variable>

Description

The cmdsynopsis element is used to model the syntax of
command line interfaces. Broadly, a command line interface consists of a command
followed by a variety of options. These options can be optional or required
and may or may not be repeatable.

User expections about how these should be formatted vary by platform and
publisher. The $v:arg-… variables are designed to make
it easy to adapt to many common forms of presentation. Each contains (usually)
a single character used as a delimiter:

	Variable	Use in a synopsis	Defaulta
	$v:arg-choice-def-close-str	Follows a default option]
	$v:arg-choice-def-open-str	Precedes a default option	[
	$v:arg-choice-opt-close-str	Follows an optional option]
	$v:arg-choice-opt-open-str	Precedes an optional option	[
	$v:arg-choice-plain-close-str	Follows an option identified as “plain”	(empty string)
	$v:arg-choice-plain-open-str	Precedes an option identified as “plain”	(empty string)
	$v:arg-choice-req-close-str	Follows a required option	}
	$v:arg-choice-req-open-str	Precedes a required option	{
	$v:arg-or-sep	Separator between options in an “or” group	|
	$v:arg-rep-def-str	Identifies a repeatable default option	(empty string)
	$v:arg-rep-norepeat-str	Identifies a non-repeatable option	(empty string)
	$v:arg-rep-repeat-str	Identifies an explicitly repeatable option	…

a
Each of the default characters is placed
in an HTML span with the class “cmdpunct”.

A contrived cmdsynopsis appears in
Example 1, “An example of a cmdsynopsis”.

 |<cmdsynopsis>
 | <command>command</command>
 | <arg choice="plain">
 | <option>--path <replaceable>PATH</replaceable>
 | </option>
 | </arg>
 | <arg>-opt</arg>
 | <arg choice="req">-req</arg>
 | <arg rep="repeat">-D<replaceable>name</replaceable>
 | </arg>
 | <group>
 | <arg choice="plain">-M</arg>
 | <arg choice="plain">-MD</arg>
 | </group>
 |</cmdsynopsis>

Example 1. An example of a cmdsynopsis

One possible rendering of such a synopsis:

command
 --path PATH
 [-opt] {-req} [-Dname…] [-M | -MD]

$err:DYNAMIC-PROFILE-EVAL-ERROR
$err:DYNAMIC-PROFILE-EVAL-ERROR — Error evaluating dynamic profile expression.

Variable:
{http://docbook.org/ns/docbook/errors}DYNAMIC-PROFILE-EVAL-ERROR

Defined in:
modules/errors.xsl

Used in:
Not used.

Synopsis
$dbe:DYNAMIC-PROFILE-EVAL-ERROR := xs:QName('dbe:DYNAMIC-PROFILE-EVAL-ERROR')

Description

This error is raised if the variable referenced in a dynamic profile
expression (see Section 2.7, “Effectivity attributes and profiling”) is not available and the
$dynamic-profile-error configuration is
“error”.

$err:DYNAMIC-PROFILE-SYNTAX-ERROR
$err:DYNAMIC-PROFILE-SYNTAX-ERROR — Internal error processing dynamic profiles.

Variable:
{http://docbook.org/ns/docbook/errors}DYNAMIC-PROFILE-SYNTAX-ERROR

Defined in:
modules/errors.xsl

Used in:
Not used.

Synopsis
$dbe:DYNAMIC-PROFILE-SYNTAX-ERROR := xs:QName('dbe:DYNAMIC-PROFILE-SYNTAX-ERROR')

Description

This is an internal error. It indicates that the syntax of a
dynamic profiling expression was unrecognized. Since dynamic profiling
should only be applied to expressions that have
been recognized, this error should never happen.

$err:INTERNAL-HIGHLIGHT-ERROR
$err:INTERNAL-HIGHLIGHT-ERROR — Internal error in syntax highlighting.

Variable:
{http://docbook.org/ns/docbook/errors}INTERNAL-HIGHLIGHT-ERROR

Defined in:
modules/errors.xsl

Used in:
highlight.xsl

Synopsis
$dbe:INTERNAL-HIGHLIGHT-ERROR := xs:QName('dbe:INTERNAL-HIGHLIGHT-ERROR')

Description

This is an internal error that should never happen. It indicates
that stylesheet processing of program listings attempted to use the syntax
highlighter when the syntax highlighter was known to be unavailable.
If you see this error, please file
an issue
for it.

$err:INTERNAL-RENUMBER-ERROR
$err:INTERNAL-RENUMBER-ERROR — Internal error in chunk formatting.

Variable:
{http://docbook.org/ns/docbook/errors}INTERNAL-RENUMBER-ERROR

Defined in:
modules/errors.xsl

Used in:
modules/chunk-cleanup.xsl

Synopsis
$dbe:INTERNAL-RENUMBER-ERROR := xs:QName('dbe:INTERNAL-RENUMBER-ERROR')

Description

This is an internal error that should never happen. It indicates
that stylesheet processing of footnotes during “chunking” has gone
awry. If you see this error, please file
an issue
for it.

$err:INVALID-AREAREFS
$err:INVALID-AREAREFS — Callout area refers to invalid target.

Variable:
{http://docbook.org/ns/docbook/errors}INVALID-AREAREFS

Defined in:
modules/errors.xsl

Used in:
modules/lists.xsl

Synopsis
$dbe:INVALID-AREAREFS := xs:QName('dbe:INVALID-AREAREFS')

Description

This error indicates that a calloutlist includes an ID/IDREF
link to a callout, but the element identified by the ID is not an areaset,
area, or callout.

This
should
be identified as a validation error by a Schematron rule.

$err:INVALID-CALS
$err:INVALID-CALS — CALS table is invalid.

Variable:
{http://docbook.org/ns/docbook/errors}INVALID-CALS

Defined in:
modules/errors.xsl

Used in:
modules/tablecals.xsl

Synopsis
$dbe:INVALID-CALS := xs:QName('dbe:INVALID-CALS')

Description

This error is raised if a CALS table is invalid. The following
error conditions give rise to this error:

	The number of columns in the table exceeds the specified
cols value on tgroup.

	There is a named reference to a colspec but no colspec
with that name exists.
	There is a named reference to a spanspec but no spanspec
with that name exists.

$err:INVALID-CONSTRAINT
$err:INVALID-CONSTRAINT — Incorrect constraint reference.

Variable:
{http://docbook.org/ns/docbook/errors}INVALID-CONSTRAINT

Defined in:
modules/errors.xsl

Used in:
modules/programming.xsl

Synopsis
$dbe:INVALID-CONSTRAINT := xs:QName('dbe:INVALID-CONSTRAINT')

Description

This error is raised if a constraint link points to something
other than a constraintdef.

This
should
be identified as a validation error by a Schematron rule.

$err:INVALID-DYNAMIC-PROFILE-ERROR
$err:INVALID-DYNAMIC-PROFILE-ERROR — Invalid value specified for $dynamic-profile-error.

Variable:
{http://docbook.org/ns/docbook/errors}INVALID-DYNAMIC-PROFILE-ERROR

Defined in:
modules/errors.xsl

Used in:
Not used.

Synopsis
$dbe:INVALID-DYNAMIC-PROFILE-ERROR := xs:QName('dbe:INVALID-DYNAMIC-PROFILE-ERROR')

Description

This error is raised if the value of
$dynamic-profile-error is not a recognized value.

$err:INVALID-INJECT
$err:INVALID-INJECT — Invalid callout area specification.

Variable:
{http://docbook.org/ns/docbook/errors}INVALID-INJECT

Defined in:
modules/errors.xsl

Used in:
modules/verbatim.xsl

Synopsis
$dbe:INVALID-INJECT := xs:QName('dbe:INVALID-INJECT')

Description

This error is raised if a programlistingco or
screenco contains invalid areas. This can arise from invalid
markup, unsupported units in an area, or unparseable coordinates in an area.

$err:INVALID-NAME-STYLE
$err:INVALID-NAME-STYLE — Invalid name style.

Variable:
{http://docbook.org/ns/docbook/errors}INVALID-NAME-STYLE

Defined in:
modules/errors.xsl

Used in:
modules/info.xsl

Used by:
t:person-name

Synopsis
$dbe:INVALID-NAME-STYLE := xs:QName('dbe:INVALID-NAME-STYLE')

Description

This error indicates that a request was made to format a personal
name (see t:person-name) with an unknown style name.

$err:INVALID-PRODUCTIONRECAP
$err:INVALID-PRODUCTIONRECAP — Incorrect production reference.

Variable:
{http://docbook.org/ns/docbook/errors}INVALID-PRODUCTIONRECAP

Defined in:
modules/errors.xsl

Used in:
modules/programming.xsl

Synopsis
$dbe:INVALID-PRODUCTIONRECAP := xs:QName('dbe:INVALID-PRODUCTIONRECAP')

Description

This error is raised if a productionrecap link points to something
other than a production.

This
should
be identified as a validation error by a Schematron rule.

$err:INVALID-RESULTS-REQUESTED
$err:INVALID-RESULTS-REQUESTED — Invalid result form parameter.

Variable:
{http://docbook.org/ns/docbook/errors}INVALID-RESULTS-REQUESTED

Defined in:
modules/errors.xsl

Used in:
docbook.xsl

Used by:
t:docbook

Synopsis
$dbe:INVALID-RESULTS-REQUESTED := xs:QName('dbe:INVALID-RESULTS-REQUESTED')

Description

This error is raised if the
$result parameter passed to t:docbook is
not one of “raw-results”, “chunked-results”,
or “main-document”.

$err:INVALID-TEMPLATE
$err:INVALID-TEMPLATE — Invalid template reference.

Variable:
{http://docbook.org/ns/docbook/errors}INVALID-TEMPLATE

Defined in:
modules/errors.xsl

Used in:
modules/templates.xsl

Synopsis
$dbe:INVALID-TEMPLATE := xs:QName('dbe:INVALID-TEMPLATE')

Description

This error is raised if a template reference names a template that
does not exist.

$err:INVALID-TRANSFORM
$err:INVALID-TRANSFORM — Error processing a transform.

Variable:
{http://docbook.org/ns/docbook/errors}INVALID-TRANSFORM

Defined in:
modules/errors.xsl

Used in:
docbook.xsl

Used by:
t:docbook

Synopsis
$dbe:INVALID-TRANSFORM := xs:QName('dbe:INVALID-TRANSFORM')

Description

The lists of transforms in $transform-original
$transform-before, and $transform-after
must either be strings (the stylesheet location) or a map that specifies
the stylesheet location and other properties.

This error is raised if an element of the list is neither a map nor
a string.

$v:personal-name-styles
$personal-name-styles — The list of known personal name styles.

Variable:
{http://docbook.org/ns/docbook/variables}personal-name-styles

Defined in:
modules/variable.xsl

Used in:
modules/info.xsl

Synopsis
$v:personal-name-styles := ('first-last', 'last-first', 'FAMILY-given')

Description

The stylesheets can format personal names in a variety of ways.
This variable contains the list of known ways, see
t:person-name.

$v:VERSION
$v:VERSION — The stylesheet version.

Variable:
{http://docbook.org/ns/docbook/variables}VERSION

Defined in:
VERSION.xsl

Used in:
modules/head.xsl, modules/inlines.xsl

Synopsis
$v:VERSION := '2.1.0'

Description

This variable holds the version number of the stylesheets.

$v:VERSION-ID
$v:VERSION-ID — A unique version identifier.

Variable:
{http://docbook.org/ns/docbook/variables}VERSION-ID

Defined in:
VERSION.xsl

Used in:
modules/head.xsl

Synopsis
$v:VERSION-ID := '9941714'

Description

Generally speaking the $VERSION is sufficient to
identify the stylesheets. The $VERSION-ID adds a unique identifier
derived from the latest
git
commit.

$v:admonition-icons
$v:admonition-icons — Admonition icons.

Variable:
{http://docbook.org/ns/docbook/variables}admonition-icons

Defined in:
modules/variable.xsl

Used in:
modules/admonitions.xsl

Synopsis
 |<xsl:variable name="v:admonition-icons">
 | <tip>☞</tip>
 | <note>ⓘ</note>
 | <important>☝</important>
 | <caution>⚠</caution>
 | <warning>🛑</warning>
 | <danger>⚡</danger>
 |</xsl:variable>

Description

These are the icons that will be presented next to admonitions.
They’re single Unicode characters in the default distribution, but they
can be replaced by graphics or other markup.

$v:annotation-close
$v:annotation-close — Annotation close button.

Variable:
{http://docbook.org/ns/docbook/variables}annotation-close

Defined in:
modules/variable.xsl

Used in:
main.xsl

Synopsis
 |<xsl:variable name="v:annotation-close"
 | as="element()">
 | ╳
 |</xsl:variable>

Description

The contents of this variable will be rendered as the “close”
icon for popup annotations.

$v:as-json
$v:as-json — Map for serializing JSON.

Variable:
{http://docbook.org/ns/docbook/variables}as-json

Defined in:
modules/variable.xsl

Used in:
modules/objects.xsl

Used by:
f:mediaobject-viewport(), f:object-properties()

Synopsis
$v:as-json := map {'method':'json','indent':true()}

Description

This is a convience variable for serializing maps as JSON.
Used mostly in debugging.

$v:as-xml
$v:as-xml — Map for serializing XML.

Variable:
{http://docbook.org/ns/docbook/variables}as-xml

Defined in:
modules/variable.xsl

Used in:
modules/objects.xsl

Synopsis
$v:as-xml := map {'method':'xml','indent':true()}

Description

This is a convience variable for serializing maps as JSON.
Used mostly in debugging.

$v:bridgehead-map
$v:bridgehead-map — Maps bridgehead renderas values.

Variable:
{http://docbook.org/ns/docbook/variables}bridgehead-map

Defined in:
modules/sections.xsl

Used in:
modules/sections.xsl

Synopsis
 |<xsl:variable name="v:bridgehead-map"
 | as="map(*)">
 | <xsl:map>
 | <xsl:map-entry key="'sect1'" select="'h2'"/>
 | <xsl:map-entry key="'sect2'" select="'h3'"/>
 | <xsl:map-entry key="'sect3'" select="'h4'"/>
 | <xsl:map-entry key="'sect4'" select="'h5'"/>
 | <xsl:map-entry key="'sect5'" select="'h5'"/>
 | <xsl:map-entry key="'sect6'" select="'h5'"/>
 | <xsl:map-entry key="'block'" select="'div'"/>
 | </xsl:map>
 |</xsl:variable>

Description

The bridgehead element allows the author to insert a
heading without regard to the logical structure of the document. This
variable controls how the values provided in the renderas attribute
map to HTML. If there is no mapping for the specified rendering, it is
rendered as a div.

$v:chunk
$v:chunk — Are we chunking on this run?

Variable:
{http://docbook.org/ns/docbook/variables}chunk

Defined in:
modules/variable.xsl

Used in:
param.xsl, modules/variable.xsl, modules/chunk.xsl, modules/chunk-cleanup.xsl, modules/chunk-output.xsl

Used by:
$chunk-output-base-uri, f:chunk()

Synopsis
$v:chunk as xs:boolean := not(normalize-space($chunk) = '')

Description

If $v:chunk is true, then the stylesheets are
producing chunked output. See Section 2.6, ““Chunked” output”.

$v:chunk-filter-namespaces
$v:chunk-filter-namespaces — Namespace context for chunking expressions.

Variable:
{http://docbook.org/ns/docbook/variables}chunk-filter-namespaces

Defined in:
modules/variable.xsl

Used in:
modules/chunk.xsl

Synopsis
 |<xsl:variable name="v:chunk-filter-namespaces"
 | as="namespace-node()*">
 | <xsl:namespace name="db" select="'http://docbook.org/ns/docbook'"/>
 |</xsl:variable>

Description

When the $chunk-include and
$chunk-exclude expressions are evaluated,
the namespace bindings in this variable will be in-scope.

$v:chunk-renumber-footnotes
$v:chunk-renumber-footnotes — Renumber footnotes when chunking?

Variable:
{http://docbook.org/ns/docbook/variables}chunk-renumber-footnotes

Defined in:
modules/variable.xsl

Used in:
modules/chunk-cleanup.xsl

Synopsis
$v:chunk-renumber-footnotes as xs:boolean := f:is-true($chunk-renumber-footnotes)

Description

Footnotes are generally numbered (or otherwise marked,
see $footnote-numeration) sequentially throughout a document.
If the document is being broken
into chunks, it may seem odd if the only
footnote in a chunk is labeled “5”. If
$v:chunk-renumber-footnotes is true, the stylesheets
will attempt to renumber footnotes in each chunk so that they begin at the
first mark in each chunk.

ⓘ
Note
If your document uses footnoteref and the reference and the
footnote are in different chunks, this may lead to very confusing numeration!

$v:custom-localizations
$v:custom-localizations — Customize localizations.

Variable:
{http://docbook.org/ns/docbook/variables}custom-localizations

Defined in:
modules/variable.xsl

Used in:
modules/gentext.xsl

Since:
2.0.0

Synopsis
$v:custom-localizations as document-node()? := ()

Description

Provides overrides for localization. See Chapter 4, Localization.

$v:debug
$v:debug — Debugging flags.

Variable:
{http://docbook.org/ns/docbook/variables}debug

Defined in:
modules/variable.xsl

Used in:
modules/variable.xsl, modules/titlepage.xsl, modules/objects.xsl, modules/chunk-cleanup.xsl, modules/chunk-output.xsl

Static:
Yes

Synopsis
$v:debug as xs:string* := tokenize($debug, '[,\s]+') ! normalize-space(.)

Description

The $v:debug variable contains a sequence of
debugging flags. These are derived from tokenizing the
$debug parameter value.

$v:formal-object-title-placement
$v:formal-object-title-placement — Placement of formal object titles.

Variable:
{http://docbook.org/ns/docbook/variables}formal-object-title-placement

Defined in:
modules/variable.xsl

Used in:
modules/blocks.xsl, modules/tablecals.xsl

Synopsis
$v:formal-object-title-placement as map(xs:string,xs:string) := fp:parse-key-value-pairs(tokenize($formal-object-title-placement, '\s+'))

Description

This variable, usually derived from
$formal-object-title-placement is a map from
element (local) names to placements. The placement is either
“before” or “after”.

$v:formalgroup-nested-object-title-placement
$v:formalgroup-nested-object-title-placement — Placement of formal object titles within a formalgroup.

Variable:
{http://docbook.org/ns/docbook/variables}formalgroup-nested-object-title-placement

Defined in:
modules/variable.xsl

Used in:
modules/blocks.xsl, modules/tablecals.xsl

Synopsis
$v:formalgroup-nested-object-title-placement as map(xs:string,xs:string) := fp:parse-key-value-pairs(tokenize($formal-object-title-placement, '\s+'))

Description

This variable, usually derived from
$formalgroup-nested-object-title-placement is a map from
element (local) names to placements. The placement is either
“before” or “after”.

$v:highlight-js-head-elements
$v:highlight-js-head-elements — CSS and JavaScript to support highlight.js.

Variable:
{http://docbook.org/ns/docbook/variables}highlight-js-head-elements

Defined in:
modules/variable.xsl

Used in:
modules/head.xsl

Synopsis
 |<xsl:variable name="v:highlight-js-head-elements"
 | as="element()*">
 | <link rel="stylesheet"
 | href="{$resource-base-uri}css/highlight-11.6.0.min.css"/>
 | <script src="{$resource-base-uri}js/highlight-11.6.0.min.js"/>
 | <script>hljs.highlightAll();</script>
 |</xsl:variable>

Description

If the highlight.js syntax highlighter is
selected (see $verbatim-syntax-highlighter), these elements are
added to the head element to
load and configure the highlighter.

Starting with the DocBook xslTNG Stylesheets version 1.4.1,
any link elements will be
added to the head element
before links to user-defined CSS files so that property overrides
may be specified.

$v:image-nominal-height
$v:image-nominal-height — Nominal height of an image.

Variable:
{http://docbook.org/ns/docbook/variables}image-nominal-height

Defined in:
modules/variable.xsl

Used in:
modules/objects.xsl

Used by:
f:mediaobject-viewport()

Synopsis
$v:image-nominal-height := f:parse-length($image-nominal-height)

Description

If the extension functions necessary to determine the intrinsic height
of an image are unavailable, or if the height cannot be determined, this value
will be used as the assumed intrinsic height of the image. This is generally the
parsed value of $image-nominal-height.

$v:image-nominal-width
$v:image-nominal-width — Nominal width of an image.

Variable:
{http://docbook.org/ns/docbook/variables}image-nominal-width

Defined in:
modules/variable.xsl

Used in:
modules/objects.xsl

Used by:
f:mediaobject-viewport()

Synopsis
$v:image-nominal-width := f:parse-length($image-nominal-width)

Description

If the extension functions necessary to determine the intrinsic width
of an image are unavailable, or if the width cannot be determined, this value
will be used as the assumed intrinsic width of the image. This is generally the
parsed value of $image-nominal-width.

$v:invisible-characters
$v:invisible-characters — A list of characters that are invisible in verbatim environments.

Variable:
{http://docbook.org/ns/docbook/variables}invisible-characters

Defined in:
modules/verbatim.xsl

Used in:
modules/verbatim.xsl

Synopsis
$v:invisible-characters := ('︀', '︁', '︂', '︃', '︄', '︅', '︆', '︇', '︈', '︉', '︊', '︋', '︌', '︍', '︎', '️', '​')

Description

When callouts are being inserted into a verbatim environment, the
stylesheets must count the characters in each line in order to find the correct
column. The characters in this list are considered invisible and do not
increase the column count as they’re passed.

$v:localization-base-uri
$v:localization-base-uri — Base URI for localization data files.

Variable:
{http://docbook.org/ns/docbook/variables}localization-base-uri

Defined in:
modules/variable.xsl

Used in:
modules/functions.xsl

Used by:
f:l10n-language()

Since:
2.0.0

Synopsis
$v:localization-base-uri := resolve-uri('../locale/', static-base-uri())

Description

This is the base URI used to resolve references to localization data.

$v:media-type-default
$v:media-type-default — Default media type.

Variable:
{http://docbook.org/ns/docbook/variables}media-type-default

Defined in:
modules/variable.xsl

Used in:
modules/objects.xsl

Synopsis
$v:media-type-default as xs:string := 'application/octet-stream'

Description

When attempting to determine the media type of a file, the stylesheets
use the $v:media-type-map to check for a media type based on
the filename (or URI) extension. If there’s no extension or if the extension isn’t
in that map, this value is used.

$v:media-type-map
$v:media-type-map — Mapping from extensions to media types.

Variable:
{http://docbook.org/ns/docbook/variables}media-type-map

Defined in:
modules/variable.xsl

Used in:
modules/objects.xsl

Synopsis
 |<xsl:variable name="v:media-type-map"
 | as="map(xs:string, xs:string)">
 | <xsl:map>
 | <xsl:map-entry key="'.aac'" select="'audio/aac'"/>
 | <xsl:map-entry key="'.abw'" select="'application/x-abiword'"/>
 | <xsl:map-entry key="'.arc'" select="'application/x-freearc'"/>
 | <xsl:map-entry key="'.avif'" select="'image/avif'"/>
 | <xsl:map-entry key="'.avi'" select="'video/x-msvideo'"/>
 | <xsl:map-entry key="'.azw'" select="'application/vnd.amazon.ebook'"/>
 | <xsl:map-entry key="'.bin'" select="'application/octet-stream'"/>
 | <xsl:map-entry key="'.bmp'" select="'image/bmp'"/>
 | <xsl:map-entry key="'.bz'" select="'application/x-bzip'"/>
 | <xsl:map-entry key="'.bz2'" select="'application/x-bzip2'"/>
 | <xsl:map-entry key="'.cda'" select="'application/x-cdf'"/>
 | <xsl:map-entry key="'.csh'" select="'application/x-csh'"/>
 | <xsl:map-entry key="'.css'" select="'text/css'"/>
 | <xsl:map-entry key="'.csv'" select="'text/csv'"/>
 | <xsl:map-entry key="'.doc'" select="'application/msword'"/>
 | <xsl:map-entry key="'.docx'"
 | select="'application/vnd.openxmlformats-officedocument.wordprocessingml.document'"/>
 | <xsl:map-entry key="'.eot'" select="'application/vnd.ms-fontobject'"/>
 | <xsl:map-entry key="'.epub'" select="'application/epub+zip'"/>
 | <xsl:map-entry key="'.gz'" select="'application/gzip'"/>
 | <xsl:map-entry key="'.gif'" select="'image/gif'"/>
 | <xsl:map-entry key="'.htm'" select="'text/html'"/>
 | <xsl:map-entry key="'.html'" select="'text/html'"/>
 | <xsl:map-entry key="'.ico'" select="'image/vnd.microsoft.icon'"/>
 | <xsl:map-entry key="'.ics'" select="'text/calendar'"/>
 | <xsl:map-entry key="'.jar'" select="'application/java-archive'"/>
 | <xsl:map-entry key="'.jpeg'" select="'image/jpeg'"/>
 | <xsl:map-entry key="'.jpg'" select="'image/jpeg'"/>
 | <xsl:map-entry key="'.js'" select="'text/javascript'"/>
 | <xsl:map-entry key="'.json'" select="'application/json'"/>
 | <xsl:map-entry key="'.jsonld'" select="'application/ld+json'"/>
 | <xsl:map-entry key="'.mid'" select="'audio/midi'"/>
 | <xsl:map-entry key="'.midi'" select="'audio/midi'"/>
 | <xsl:map-entry key="'.mjs'" select="'text/javascript'"/>
 | <xsl:map-entry key="'.m3u8'" select="'application/x-mpegURL'"/>
 | <xsl:map-entry key="'.mp3'" select="'audio/mpeg'"/>
 | <xsl:map-entry key="'.mp4'" select="'video/mp4'"/>
 | <xsl:map-entry key="'.mpeg'" select="'video/mpeg'"/>
 | <xsl:map-entry key="'.mpkg'" select="'application/vnd.apple.installer+xml'"/>
 | <xsl:map-entry key="'.mov'" select="'video/quicktime'"/>
 | <xsl:map-entry key="'.odp'" select="'application/vnd.oasis.opendocument.presentation'"/>
 | <xsl:map-entry key="'.ods'" select="'application/vnd.oasis.opendocument.spreadsheet'"/>
 | <xsl:map-entry key="'.odt'" select="'application/vnd.oasis.opendocument.text'"/>
 | <xsl:map-entry key="'.oga'" select="'audio/ogg'"/>
 | <xsl:map-entry key="'.ogv'" select="'video/ogg'"/>
 | <xsl:map-entry key="'.ogx'" select="'application/ogg'"/>
 | <xsl:map-entry key="'.opus'" select="'audio/opus'"/>
 | <xsl:map-entry key="'.otf'" select="'font/otf'"/>
 | <xsl:map-entry key="'.png'" select="'image/png'"/>
 | <xsl:map-entry key="'.pdf'" select="'application/pdf'"/>
 | <xsl:map-entry key="'.php'" select="'application/x-httpd-php'"/>
 | <xsl:map-entry key="'.ppt'" select="'application/vnd.ms-powerpoint'"/>
 | <xsl:map-entry key="'.pptx'"
 | select="'application/vnd.openxmlformats-officedocument.presentationml.presentation'"/>
 | <xsl:map-entry key="'.rar'" select="'application/vnd.rar'"/>
 | <xsl:map-entry key="'.rtf'" select="'application/rtf'"/>
 | <xsl:map-entry key="'.sh'" select="'application/x-sh'"/>
 | <xsl:map-entry key="'.svg'" select="'image/svg'"/>
 | <!-- not image/svg+xml for epub -->
 | <xsl:map-entry key="'.tar'" select="'application/x-tar'"/>
 | <xsl:map-entry key="'.tif'" select="'image/tiff'"/>
 | <xsl:map-entry key="'.tiff'" select="'image/tiff'"/>
 | <xsl:map-entry key="'.ts'" select="'video/mp2t'"/>
 | <xsl:map-entry key="'.ttf'" select="'font/ttf'"/>
 | <xsl:map-entry key="'.txt'" select="'text/plain'"/>
 | <xsl:map-entry key="'.text'" select="'text/plain'"/>
 | <xsl:map-entry key="'.vsd'" select="'application/vnd.visio'"/>
 | <xsl:map-entry key="'.wav'" select="'audio/wav'"/>
 | <xsl:map-entry key="'.weba'" select="'audio/webm'"/>
 | <xsl:map-entry key="'.webm'" select="'video/webm'"/>
 | <xsl:map-entry key="'.webp'" select="'image/webp'"/>
 | <xsl:map-entry key="'.wmv'" select="'video/x-ms-wmv'"/>
 | <xsl:map-entry key="'.woff'" select="'font/woff'"/>
 | <xsl:map-entry key="'.woff2'" select="'font/woff2'"/>
 | <xsl:map-entry key="'.xhtml'" select="'application/xhtml+xml'"/>
 | <xsl:map-entry key="'.xls'" select="'application/vnd.ms-excel'"/>
 | <xsl:map-entry key="'.xlsx'"
 | select="'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet'"/>
 | <xsl:map-entry key="'.xml'" select="'application/xml'"/>
 | <xsl:map-entry key="'.xul'" select="'application/vnd.mozilla.xul+xml'"/>
 | <xsl:map-entry key="'.zip'" select="'application/zip'"/>
 | <xsl:map-entry key="'.7z'" select="'application/x-7z-compressed'"/>
 | </xsl:map>
 |</xsl:variable>

Description

When attempting to determine the media type of a file, the stylesheets
use this map to check for a media type based on
the filename (or URI) extension.

This mapping is derived from Mozilla’s
list of common types. The “.3gp” and
“.3g2” extensions have been removed because they
have multiple mappings. The “.text”, “.mov”,
“.m3u8”, and “.wmv” extensions have been
added. The media type for “.svg” has been simplified to just
“image/svg”
because that seems to be what EPUB readers require.

$v:mediaobject-details-placement
$v:mediaobject-details-placement — Placement of formal object titles.

Variable:
{http://docbook.org/ns/docbook/variables}mediaobject-details-placement

Defined in:
modules/variable.xsl

Used in:
modules/objects.xsl

Synopsis
$v:mediaobject-details-placement as map(xs:string,xs:string) := fp:parse-key-value-pairs(tokenize($mediaobject-details-placement, '\s+'))

Description

This variable, usually derived from
$mediaobject-details-placement is a map from
element (local) names to placements. The placement is either
“before” or “after”.

$v:mediaobject-exclude-extensions
$v:mediaobject-exclude-extensions — Exluded media type extensions.

Variable:
{http://docbook.org/ns/docbook/variables}mediaobject-exclude-extensions

Defined in:
modules/variable.xsl

Used in:
modules/objects.xsl

Synopsis
$v:mediaobject-exclude-extensions := tokenize($mediaobject-exclude-extensions, '\s+')

Description

This variable simply contains the list of excluded extensions constructed
from the $mediaobject-exclude-extensions parameter.

$v:mediaobject-input-base-uri
$v:mediaobject-input-base-uri — Base URI of images and other media in the XML sources.

Description

This variable was replaced with f:mediaobject-input-base-uri().

$v:mediaobject-output-base-uri
$v:mediaobject-output-base-uri — Base URI of images and other media in the output.

Variable:
{http://docbook.org/ns/docbook/variables}mediaobject-output-base-uri

Defined in:
modules/variable.xsl

Used in:
Not used.

Synopsis
 |<xsl:variable name="v:mediaobject-output-base-uri"
 | as="xs:string?">
 | <xsl:message use-when="'mediaobject-uris' = $v:debug"
 | select="'Mediaobject out. base URI:', if (empty($mediaobject-output-base-uri)) then () else if (ends-with($mediaobject-output-base-uri, '/')) then $mediaobject-output-base-uri else $mediaobject-output-base-uri || '/'"/>
 | <xsl:sequence select="if (empty($mediaobject-output-base-uri)) then () else if (ends-with($mediaobject-output-base-uri, '/')) then $mediaobject-output-base-uri else $mediaobject-output-base-uri || '/'"/>
 |</xsl:variable>

Description

This value is calculated from the
$mediaobject-output-base-uri parameter. If the
parameter is the empty string, then this value is the empty sequence. Otherwise,
this value is the value of the
$mediaobject-output-base-uri parameter, which is assumed
to be absolute. A trailing slash will be added to the parameter value if
it is not present.

$v:nominal-page-width
$v:nominal-page-width — The nominal page width.

Variable:
{http://docbook.org/ns/docbook/variables}nominal-page-width

Defined in:
modules/variable.xsl

Used in:
modules/tablecals.xsl

Synopsis
$v:nominal-page-width := f:parse-length($nominal-page-width)

Description

To calculate the width of the columns in some complex CALS
tables, the stylesheets need to know the page width. The
$nominal-page-width is used for this
value. It is generally the value of $nominal-page-width
parsed as a length (see Section 5.2, “Lengths and units”).

$v:olink-databases
$v:olink-databases — External olink databases.

Variable:
{http://docbook.org/ns/docbook/variables}olink-databases

Defined in:
modules/variable.xsl

Used in:
modules/links.xsl

Synopsis
 |<xsl:variable name="v:olink-databases"
 | as="element(h:targetdb)*">
 | <xsl:if test="normalize-space($olink-databases) != ''">
 | <xsl:for-each select="tokenize($olink-databases, ',\s*') ! normalize-space(.)">
 | <xsl:variable name="db" select="."/>
 | <xsl:try>
 | <xsl:variable name="olinkdb" select="doc($db)/h:targetdb"/>
 | <xsl:if test="empty($olinkdb)">
 | <xsl:message select="'No targets in olinkdb:', $db"/>
 | </xsl:if>
 | <xsl:sequence select="$olinkdb"/>
 | <xsl:catch>
 | <xsl:message select="'Failed to load olinkdb:', $db"/>
 | </xsl:catch>
 | </xsl:try>
 | </xsl:for-each>
 | </xsl:if>
 |</xsl:variable>

Description

The $v:olink-databases variable is usually derived from the
$olink-databases parameter. It must contain a sequence of
olink target databases.

$v:prism-js-head-elements
$v:prism-js-head-elements — CSS and JavaScript to support Prism.

Variable:
{http://docbook.org/ns/docbook/variables}prism-js-head-elements

Defined in:
modules/variable.xsl

Used in:
modules/head.xsl

Synopsis
 |<xsl:variable name="v:prism-js-head-elements"
 | as="element()*">
 | <link rel="stylesheet" href="{$resource-base-uri}css/prism.css"/>
 | <script src="{$resource-base-uri}js/prism.js"/>
 |</xsl:variable>

Description

If the prism syntax highlighter is
selected (see $verbatim-syntax-highlighter), these elements are
added to the head element to
load and configure the highlighter.

Starting with the DocBook xslTNG Stylesheets version 1.4.1,
any link elements will be
added to the head element
before links to user-defined CSS files so that property overrides
may be specified.

$v:standard-transforms
$v:standard-transforms — The standard pre-processing transformations.

Variable:
{http://docbook.org/ns/docbook/variables}standard-transforms

Defined in:
docbook.xsl

Used in:
docbook.xsl

Synopsis
 |<xsl:variable name="v:standard-transforms"
 | as="map(*)*">
 | <xsl:map>
 | <xsl:map-entry key="'stylesheet-location'"
 | select="resolve-uri('transforms/00-logstruct.xsl', static-base-uri())"/>
 | </xsl:map>
 | <xsl:map>
 | <xsl:map-entry key="'stylesheet-location'"
 | select="resolve-uri('transforms/10-xinclude.xsl', static-base-uri())"/>
 | <xsl:map-entry key="'functions'"
 | select="'Q{http://docbook.org/extensions/xslt}xinclude'"/>
 | <xsl:map-entry key="'test'" select="'exists(//xi:include)'"/>
 | </xsl:map>
 | <xsl:map>
 | <xsl:map-entry key="'stylesheet-location'"
 | select="resolve-uri('transforms/20-db4to5.xsl', static-base-uri())"/>
 | <xsl:map-entry key="'test'">
 | not(namespace-uri(/*) = 'http://docbook.org/ns/docbook')
 | </xsl:map-entry>
 | <xsl:map-entry key="'extra-params'"
 | select="map { QName('', 'base-uri'): 'base-uri(/*)' }"/>
 | </xsl:map>
 | <xsl:map>
 | <xsl:map-entry key="'stylesheet-location'"
 | select="resolve-uri('transforms/30-transclude.xsl', static-base-uri())"/>
 | <xsl:map-entry key="'test'" select="'f:is-true($docbook-transclusion)'"/>
 | </xsl:map>
 | <xsl:map>
 | <xsl:map-entry key="'stylesheet-location'"
 | select="resolve-uri('transforms/40-profile.xsl', static-base-uri())"/>
 | <xsl:map-entry key="'test'">
 | f:is-true($dynamic-profiles)
 | or $profile-lang != '' or $profile-revisionflag != ''
 | or $profile-role != '' or $profile-arch != ''
 | or $profile-audience != '' or $profile-condition != ''
 | or $profile-conformance != '' or $profile-os != ''
 | or $profile-outputformat != '' or $profile-revision != ''
 | or $profile-security != '' or $profile-userlevel != ''
 | or $profile-vendor != '' or $profile-wordsize != ''
 | </xsl:map-entry>
 | </xsl:map>
 | <xsl:map>
 | <xsl:map-entry key="'stylesheet-location'"
 | select="resolve-uri('transforms/50-normalize.xsl', static-base-uri())"/>
 | </xsl:map>
 | <xsl:map>
 | <xsl:map-entry key="'stylesheet-location'"
 | select="resolve-uri('transforms/60-annotations.xsl', static-base-uri())"/>
 | <xsl:map-entry key="'test'" select="'exists(//db:annotation)'"/>
 | </xsl:map>
 | <xsl:map>
 | <xsl:map-entry key="'stylesheet-location'"
 | select="resolve-uri('transforms/70-xlinkbase.xsl', static-base-uri())"/>
 | </xsl:map>
 | <xsl:if test="exists($local-conventions)">
 | <xsl:map>
 | <xsl:map-entry key="'stylesheet-location'" select="$local-conventions"/>
 | </xsl:map>
 | </xsl:if>
 | <xsl:map>
 | <xsl:map-entry key="'stylesheet-location'"
 | select="resolve-uri('transforms/75-validate.xsl', static-base-uri())"/>
 | <xsl:map-entry key="'functions'"
 | select="'Q{http://docbook.org/extensions/xslt}validate-with-relax-ng'"/>
 | <xsl:map-entry key="'test'" select="'normalize-space($relax-ng-grammar) != '''''"/>
 | </xsl:map>
 | <xsl:map>
 | <xsl:map-entry key="'stylesheet-location'"
 | select="resolve-uri('transforms/80-oxy-markup.xsl', static-base-uri())"/>
 | <xsl:map-entry key="'test'">
 | f:is-true(f:pi(/*/db:info, 'oxy-markup', $oxy-markup))
 | and exists(//processing-instruction()[starts-with(name(), 'oxy_')])
 | </xsl:map-entry>
 | </xsl:map>
 |</xsl:variable>

Description

This variable contains the list of preprocessing transforms
applied to each document. You can add transformations that operate
on the original document
($transform-original) or on the result of
these transforms, but before the DocBook HTML transformation occurs
($transform-before), or after
the HTML transformation ($transform-after).

You shouldn’t need to modify this variable unless you want to
remove or reorder the standard transforms, or insert your own
into the middle.

$v:templates
$v:templates — Custom templates for title pages.

Variable:
{http://docbook.org/ns/docbook/variables}templates

Defined in:
modules/templates.xsl

Used in:
modules/templates.xsl

Synopsis
 |<xsl:variable name="v:templates"
 | as="document-node()">
 | <xsl:document/>
 |</xsl:variable>

Description

The stylesheets use templates, as described in Section 5.5, “Templates”,
to determine the formatting of title pages*. Any templates provided in
$v:templates will be used preferentially to whatever builtin templates
exist.

*
The term “title pages”
should be understood very broadly here. Anything that has a title has a title page, even
if that “page” consists of only a single heading.

$v:theme-list
$v:theme-list — Enumerates available themes.

Variable:
{http://docbook.org/ns/docbook/variables}theme-list

Defined in:
modules/variable.xsl

Used in:
modules/variable.xsl

Synopsis
 |<xsl:variable name="v:theme-list"
 | as="element()*">
 | <theme name="Materials dark" id="materials-dark" dark="true"/>
 | <theme name="Materials light" id="materials-light" dark="false"/>
 |</xsl:variable>

Description

This variable is part of the experimental themes feature. It
enumerates the available themes. Each theme has three parts, a name,
an ID, and (optionally) an indication of whether or not it’s a “dark”
theme.

Themes are implemented in CSS. If the
$theme-picker is enabled, it will be possible
for the reader to select a theme. The theme names are used for this
purpose.

The ID value is used as a class on the
html element.
Everything else about the theme is implemented in CSS. To add a new theme,
provide a set of CSS rules that apply when the ID class is in effect.

The dark mode setting is only used as a default. If the document
does not specify a $default-theme, if the user
has never selected a theme, if the user has enabled dark mode at the
operating system level, and if the browser makes this fact available,
the first “dark” theme will automatically be selected.

$v:title-groups
$v:title-groups — Controls how titles are formatted.

Variable:
{http://docbook.org/ns/docbook/variables}title-groups

Defined in:
modules/titles.xsl

Used in:
modules/titles.xsl

Since:
2.0.0

Synopsis
 |<xsl:variable name="v:title-groups"
 | as="element()+">
 | <xsl:sequence select="$v:user-title-groups"/>
 | <title xpath="self::db:section|self::db:sect1 |self::db:sect2|self::db:sect3|self::db:sect4|self::db:sect5 |self::db:refsection|self::db:refsect1|self::db:refsect2|self::db:refsect3"
 | group="{if (f:is-true($section-numbers)) then 'title-numbered' else 'title-unnumbered'}"/>
 | <title xpath="self::db:article|self::db:preface|self::db:chapter|self::db:appendix"
 | group="{if (f:is-true($component-numbers)) then 'title-numbered' else 'title-unnumbered'}"/>
 | <title xpath="self::db:set" group="title-unnumbered"/>
 | <title xpath="self::db:book|self::db:part|self::db:reference"
 | group="{if (f:is-true($division-numbers)) then 'title-numbered' else 'title-unnumbered'}"/>
 | <title xpath="self::db:figure[parent::db:formalgroup] |self::db:table[parent::db:formalgroup] |self::db:equation[parent::db:formalgroup] |self::db:example[parent::db:formalgroup]"
 | group="subfigure-title"/>
 | <title xpath="self::db:figure|self::db:table|self::db:equation|self::db:example"
 | group="title-numbered"/>
 | <title xpath="self::db:formalgroup" group="title-numbered"/>
 | <title xpath="self::db:step|self::db:listitem[parent::db:orderedlist]"
 | group="title-unnumbered"/>
 | <title xpath="self::db:glosssee|self::db:glossseealso"
 | group="title-unnumbered"/>
 | <title xpath="self::db:see|self::db:seealso" group="title-unnumbered"/>
 | <title xpath="self::db:question|self::db:answer" group="title-numbered"/>
 | <title xpath="self::*" group="title-unnumbered"/>
 |</xsl:variable>

Description

The title groups variable determines which template group is
used for a title. See Chapter 4, Localization.

$v:title-properties
$v:title-properties — Controls how titles are formatted.

Description

Replaced by $v:title-groups.

$v:titlepage-default
$v:titlepage-default — Default template for title pages.

Variable:
{http://docbook.org/ns/docbook/variables}titlepage-default

Defined in:
modules/templates.xsl

Used in:
modules/templates.xsl

Synopsis
 |<xsl:variable name="v:titlepage-default"
 | as="element()">
 | <titlepage-default>
 | <header>
 | <apply-templates select="db:title">
 | <div class="title">
 | <content/>
 | </div>
 | </apply-templates>
 | </header>
 | </titlepage-default>
 |</xsl:variable>

Description

Title pages, taken loosely to mean anything with a title,
are formatted using templates, see Section 5.5, “Templates”.
If a template doesn’t exist for a particular context, the
$v:titlepage-default template is used.

$v:toc-close
$v:toc-close — Persistent ToC close button.

Variable:
{http://docbook.org/ns/docbook/variables}toc-close

Defined in:
modules/variable.xsl

Used in:
modules/chunk-output.xsl

Synopsis
 |<xsl:variable name="v:toc-close"
 | as="element()">
 | <img src=""
 | alt="X"/>
 |</xsl:variable>

Description

The contents of this variable will be rendered as the “close”
icon for the persistent ToC.

$v:toc-open
$v:toc-open — Persistent ToC open button.

Variable:
{http://docbook.org/ns/docbook/variables}toc-open

Defined in:
modules/variable.xsl

Used in:
modules/chunk-output.xsl

Synopsis
 |<xsl:variable name="v:toc-open"
 | as="element()">
 | <img src=""
 | alt="[toc]"/>
 |</xsl:variable>

Description

The contents of this variable will be rendered as the “open”
icon for the persistent ToC.

$v:unit-scale
$v:unit-scale — List of known measurement units and their sizes.

Variable:
{http://docbook.org/ns/docbook/variables}unit-scale

Defined in:
modules/units.xsl

Used in:
modules/units.xsl

Used by:
f:parse-length(), f:absolute-length()

Synopsis
 |<xsl:variable name="v:unit-scale"
 | as="map(*)">
 | <xsl:map>
 | <xsl:map-entry key="'px'" select="1.0"/>
 | <xsl:map-entry key="'in'" select="$pixels-per-inch"/>
 | <xsl:map-entry key="'m'" select="$pixels-per-inch div 2.54 * 100.0"/>
 | <xsl:map-entry key="'cm'" select="$pixels-per-inch div 2.54"/>
 | <xsl:map-entry key="'mm'" select="$pixels-per-inch div 25.4"/>
 | <xsl:map-entry key="'pt'" select="$pixels-per-inch div 72.0"/>
 | <xsl:map-entry key="'pc'" select="$pixels-per-inch div 6.0"/>
 | <xsl:map-entry key="'em'" select="$pixels-per-inch div 6.0"/>
 | <xsl:map-entry key="'barleycorn'" select="$pixels-per-inch div 3.0"/>
 | </xsl:map>
 |</xsl:variable>

Description

The $v:unit-scale map contains a set of
measurement units and their absolute length in terms of pixels (as
computed with $pixels-per-inch).

Recognized units at the time of this writing are shown in
Figure 1, “Recognized units of measure”.

	Unit	Size
	px	1.0
	in	$pixels-per-inch
	m	$pixels-per-inch div 2.54 * 100.0
	cm	$pixels-per-inch div 2.54
	mm	$pixels-per-inch div 25.4
	pt	$pixels-per-inch div 72.0
	pc	$pixels-per-inch div 6.0
	em	$pixels-per-inch div 6.0
	barleycorn	$pixels-per-inch div 3.0

Figure 1. Recognized units of measure

See also Section 5.2, “Lengths and units”.

$v:user-title-groups
$v:user-title-groups — Controls how titles are formatted.

Variable:
{http://docbook.org/ns/docbook/variables}user-title-groups

Defined in:
modules/titles.xsl

Used in:
modules/titles.xsl

Used by:
$v:title-groups

Since:
2.0.0

Synopsis
 |<xsl:variable name="v:user-title-groups"
 | as="element()*"/>

Description

This variable contains user-supplied overrides to
$v:title-groups. See that variable for more details.

$v:user-title-properties
$v:user-title-properties — Controls how titles are formatted.

Description

Replaced by $v:user-title-groups.

$v:user-xref-groups
$v:user-xref-groups — Controls how cross-references are formatted.

Variable:
{http://docbook.org/ns/docbook/variables}user-xref-groups

Defined in:
modules/xref.xsl

Used in:
modules/xref.xsl

Used by:
$v:xref-groups

Since:
2.0.0

Synopsis
 |<xsl:variable name="v:user-xref-groups"
 | as="element()*"/>

Description

This variable contains user-supplied overrides to
$v:xref-groups. See that variable for more details.

$v:user-xref-properties
$v:user-xref-properties — Controls how cross-references are formatted.

Description

Replaced by $v:user-xref-groups.

$v:verbatim-callouts
$v:verbatim-callouts — A list determining how callouts are processed.

Variable:
{http://docbook.org/ns/docbook/variables}verbatim-callouts

Defined in:
modules/variable.xsl

Used in:
modules/verbatim.xsl

Used by:
$v:verbatim-properties

Synopsis
$v:verbatim-callouts as xs:string* := tokenize($verbatim-callouts, '\s+')

Description

This value is a sequence constructed automatically from the
$verbatim-callouts parameter.

$v:verbatim-line-style
$v:verbatim-line-style — List of verbatim elements to be rendered in the line style.

Variable:
{http://docbook.org/ns/docbook/variables}verbatim-line-style

Defined in:
modules/variable.xsl

Used in:
modules/verbatim.xsl

Used by:
$v:verbatim-properties

Synopsis
$v:verbatim-line-style := tokenize($verbatim-line-style, '\s+')

Description

The elements whose local names appear in this list will be
formatted using the line verbatim style by default.
For a discussion of verbatim elements and styles, see
Section 5.3, “Verbatim styles”.

This list is
usually constructed from the $verbatim-line-style parameter.

$v:verbatim-number-every-nth
$v:verbatim-number-every-nth — Line numbering frequency.

Variable:
{http://docbook.org/ns/docbook/variables}verbatim-number-every-nth

Defined in:
modules/variable.xsl

Used in:
modules/verbatim.xsl

Synopsis
$v:verbatim-number-every-nth := xs:integer($verbatim-number-every-nth)

Description

When formatting verbatim environments with line numbers,
every $verbatim-number-every-nth line is numbered.

This value is
usually constructed from the $verbatim-number-every-nth parameter.

$v:verbatim-number-first-line
$v:verbatim-number-first-line — Always number the first line of a verbatim listing?

Variable:
{http://docbook.org/ns/docbook/variables}verbatim-number-first-line

Defined in:
modules/variable.xsl

Used in:
modules/verbatim.xsl

Synopsis
$v:verbatim-number-first-line := f:is-true($verbatim-number-first-line)

Description

When formatting verbatim environments with line numbers,
the first line will be numbered (irrespective of the setting of
$v:verbatim-number-every-nth if this value
is true.

This value is
usually constructed from the $verbatim-number-first-line parameter.

$v:verbatim-number-minlines
$v:verbatim-number-minlines — Shortest listing to number.

Variable:
{http://docbook.org/ns/docbook/variables}verbatim-number-minlines

Defined in:
modules/variable.xsl

Used in:
modules/verbatim.xsl

Synopsis
$v:verbatim-number-minlines := xs:integer($verbatim-number-minlines)

Description

When formatting verbatim environments with line numbers,
environments less than
$verbatim-number-minlines in length will
not be numbered.

This value is
usually constructed from the $verbatim-number-minlines parameter.

$v:verbatim-numbered-elements
$v:verbatim-numbered-elements — Identifies verbatim elements that should have line numbers.

Variable:
{http://docbook.org/ns/docbook/variables}verbatim-numbered-elements

Defined in:
modules/variable.xsl

Used in:
modules/verbatim.xsl

Used by:
$v:verbatim-properties

Synopsis
$v:verbatim-numbered-elements as xs:string* := tokenize($verbatim-numbered-elements, '\s+')

Description

A list of the verbatim environments that should be numbered.

This value is
usually constructed from the $verbatim-numbered-elements parameter.

$v:verbatim-plain-style
$v:verbatim-plain-style — List of verbatim elements to be rendered in the plain style.

Variable:
{http://docbook.org/ns/docbook/variables}verbatim-plain-style

Defined in:
modules/variable.xsl

Used in:
modules/verbatim.xsl

Used by:
$v:verbatim-properties

Synopsis
$v:verbatim-plain-style as xs:string* := tokenize($verbatim-plain-style, '\s+')

Description

The elements whose local names appear in this list will be
formatted using the plain verbatim style by default.
For a discussion of verbatim elements and styles, see
Section 5.3, “Verbatim styles”.

This list is
usually constructed from the $verbatim-plain-style parameter.

$v:verbatim-properties
$v:verbatim-properties — Controls the verbatim properties of an element.

Variable:
{http://docbook.org/ns/docbook/variables}verbatim-properties

Defined in:
modules/verbatim.xsl

Used in:
modules/verbatim.xsl

Synopsis
$v:verbatim-properties as array(map(*))

Description

When processing a verbatim environment, this array of maps is consulted to
determine what properties apply to the verbatim environment. Most simple, global
customizations of verbatim environments can be achieved by setting the
$verbatim-line-style, $verbatim-plain-style,
$verbatim-callouts, and
$verbatim-numbered-elements parameters.

$v:verbatim-space
$v:verbatim-space — The space character to use when padding verbatim lines.

Variable:
{http://docbook.org/ns/docbook/variables}verbatim-space

Defined in:
modules/variable.xsl

Used in:
modules/verbatim.xsl

Synopsis
 |<xsl:variable name="v:verbatim-space"
 | as="node()">
 | <xsl:value-of select="substring($verbatim-space || ' ', 1, 1)"/>
 |</xsl:variable>

Description

When a verbatim line has to be padded in order to get a callout to appear in
the correct column, this character will be used as the padding character.
For a discussion of verbatim elements and styles, see
Section 5.3, “Verbatim styles”.

This character is usually constructed from the
$verbatim-space parameter.
Unlike the $verbatim-space, this variable must be a node not a string.

$v:verbatim-syntax-highlight-languages
$v:verbatim-syntax-highlight-languages — Languages for which syntax highlighting should be performed.

Variable:
{http://docbook.org/ns/docbook/variables}verbatim-syntax-highlight-languages

Defined in:
modules/variable.xsl

Used in:
modules/head.xsl, modules/verbatim.xsl

Used by:
f:highlight-verbatim()

Synopsis
$v:verbatim-syntax-highlight-languages := tokenize($verbatim-syntax-highlight-languages, '\s+')

Description

The $verbatim-syntax-highlight-languages is a single
string for the convenience of users. This variable contains the languages as a list.

$v:verbatim-syntax-highlight-options
$v:verbatim-syntax-highlight-options — Syntax highlighting options.

Variable:
{http://docbook.org/ns/docbook/variables}verbatim-syntax-highlight-options

Defined in:
modules/variable.xsl

Used in:
modules/verbatim.xsl

Synopsis
$v:verbatim-syntax-highlight-options := map { }

Description

If the Pygments
syntax highlighter is applied, the
$verbatim-syntax-highlight-options are applied.

Three options are recognized:

	language
	The programming language to use for syntax highlighting. This option is required.

	show-command
	If the show-command option is true (“1”, “yes”, or “true”),
then the pygmentize command will be printed. This is a debugging option.

	show-result
	If the show-result option is true (“1”, “yes”, or “true”),
then the string returned from pygmentize will be printed. This is a
debugging option.

ⓘ
Note
Syntax highlighting with Pygments requires spawning an external
process for each highlighted environment. This can add significantly
to the processing time if there are many such environments.

$v:verbatim-syntax-highlight-pygments-options
$v:verbatim-syntax-highlight-pygments-options — Pygments options.

Variable:
{http://docbook.org/ns/docbook/variables}verbatim-syntax-highlight-pygments-options

Defined in:
modules/variable.xsl

Used in:
modules/verbatim.xsl

Synopsis
$v:verbatim-syntax-highlight-pygments-options := map { }

Description

If the Pygments
syntax highlighter is applied, the
$verbatim-syntax-highlight-pygments-options are applied.

Each key/value pair in the map will be passed to pygmentize
as a -Pkey=value
option.

$v:verbatim-table-style
$v:verbatim-table-style — List of verbatim elements to be rendered in the table style.

Variable:
{http://docbook.org/ns/docbook/variables}verbatim-table-style

Defined in:
modules/variable.xsl

Used in:
modules/verbatim.xsl

Used by:
$v:verbatim-properties

Synopsis
$v:verbatim-table-style := tokenize($verbatim-table-style, '\s+')

Description

The elements whose local names appear in this list will be
formatted using the line verbatim style by default.
For a discussion of verbatim elements and styles, see
Section 5.3, “Verbatim styles”.

This list is
usually constructed from the $verbatim-table-style parameter.

$v:xref-groups
$v:xref-groups — Controls how cross-references are formatted.

Variable:
{http://docbook.org/ns/docbook/variables}xref-groups

Defined in:
modules/xref.xsl

Used in:
modules/xref.xsl

Since:
2.0.0

Synopsis
 |<xsl:variable name="v:xref-groups"
 | as="element()+">
 | <xsl:sequence select="$v:user-xref-groups"/>
 | <crossref xpath="self::db:section[ancestor::db:preface]"
 | group="xref"
 | template="section-in-preface"/>
 | <crossref xpath="self::db:section" group="xref-number-and-title"/>
 | <crossref xpath="self::db:chapter|self::db:appendix"
 | group="xref-number-and-title"/>
 | <crossref xpath="self::db:part|self::db:reference" group="xref-number-and-title"/>
 | <crossref xpath="self::db:figure|self::db:example|self::db:table |self::db:procedure|self::db:equation |self::db:formalgroup"
 | group="xref-number-and-title"/>
 | <crossref xpath="self::*" group="xref"/>
 |</xsl:variable>

Description

The cross-reference groups variable determines which template group is
used for a cross-reference. See Chapter 4, Localization.

$v:xref-properties
$v:xref-properties — Controls how cross-references are formatted.

Description

Replaced by $v:xref-groups.

III. Function reference
Table of Contents
	ext:cwd
	ext:image-metadata
	ext:image-properties
	ext:pygmentize
	ext:pygmentize-available
	ext:validate-with-relax-ng
	ext:xinclude
	f:absolute-length
	f:attributes
	f:cals-colsep
	f:cals-rowsep
	f:check-gentext
	f:chunk
	f:chunk-filename
	f:chunk-title
	f:css-length
	f:css-property
	f:date-format
	f:empty-length
	f:equal-lengths
	f:generate-id
	f:gentext
	f:gentext-letters
	f:gentext-letters-for-language
	f:highlight-verbatim
	f:href
	f:id
	f:in-scope-language
	f:intra-number-separator
	f:is-empty-length
	f:is-true
	f:l10n-language
	f:l10n-token
	f:label-separator
	f:language
	f:languages
	f:length-string
	f:length-units
	f:locales
	f:make-length
	f:mediaobject-amend-uri
	f:mediaobject-input-base-uri
	f:mediaobject-type
	f:mediaobject-viewport
	f:number-separator
	f:object-align
	f:object-contentheight
	f:object-contentwidth
	f:object-height
	f:object-properties
	f:object-scale
	f:object-scalefit
	f:object-valign
	f:object-width
	f:orderedlist-item-number
	f:orderedlist-item-numeration
	f:orderedlist-startingnumber
	f:parse-length
	f:pi
	f:pi-attributes
	f:post-label-punctuation
	f:refsection
	f:relative-length
	f:relative-path
	f:section
	f:section-depth
	f:spaces
	f:step-number
	f:step-numeration
	f:syntax-highlight
	f:target
	f:template
	f:tokenize-on-char
	f:unique-id
	f:uri-scheme
	f:verbatim-highlight
	f:verbatim-numbered
	f:verbatim-style
	f:verbatim-trim-trailing
	f:xlink-style
	f:xpointer-idref

ext:cwd
ext:cwd — Returns the current working directory.

Function:
{http://docbook.org/extensions/xslt}cwd#0

Synopsis
	ext:cwd() as xs:string

Description

This extension function returns the current working directory from which
the processor was executed.

ext:image-metadata
ext:image-metadata — Return intrinsic properties of an image.

Function:
{http://docbook.org/extensions/xslt}image-metadata#1

Synopsis
	ext:image-metadata($filename as xs:string) as map(*)

Description

This extension function returns a map of metadata properties
about the image, including its intrinsic size:
its width and height in pixels. If the size can be determined, the map
returned will have a “width” key whose value is the
width of the image and a “height” key whose value
is the height of the image. Both sizes will be integer values.

This function uses the metadata-extractor
library. The map may contain other properties as well.

	If the media was successfully parsed with metadata-extractor,
all of the properties identified by the extractor will be returned. Each property
name will be converted to lowercase and spaces will be replaced with hyphens.
(In other words, a property with the tag name “Palette Colour Count” will appear
in the map with a key of “palette-colour-count”.)
Property values that appear to be data/time values* will be converted to
strings that are valid ISO 8601 date/time values. Any control characters that can’t appear
in XML but that appear in a value will be replaced with Unicode references,
\uxxxx. For example, a null byte will be
replaced with \u0000.

	If the media isn’t successfully parsed with metadata-extractor,

	If it appears to be a PDF document, the function will search for the
“MediaBox” or “CropBox” in the first 100 lines
of the PDF. If either is found, its dimensions are used to calculate the width and height.
If both are present, CropBox is preferred.

	If it appears to be an SVG document, the function will search
for width and height attributes on the root
element. All of the attributes of the root element will be returned as
properties, using Clark
names.

If the width and height properties
exist, they will always be integers. This means that if an image has a property
with the name width or height and its value
isn’t an integer, it will not be returned.

If the $debug parameter includes the token
image-properties, the stylesheets will print every property
returned in an xsl:message.

*
A value that matches the regular expression
“^\d\d\d\d:\d\d:\d\d \d\d:\d\d:\d\d$” is assumed to be a date/time.
This is the format of date/time values used in EXIF metadata for most
properties that have a date/time value.

ext:image-properties
ext:image-properties — Return intrinsic properties of an image.

Function:
{http://docbook.org/extensions/xslt}image-properties#1

Synopsis
	ext:image-properties($filename as xs:string) as map(*)

Description

This extension function returns the intrinsic size of
an image: its width and height in pixels. If the size can be determined, the map returned
will have a “width” key whose value is the width of the image and
a “height” key whose value is the height of the image. Both sizes
will be integral numbers of pixels.

The ext:image-metadata() function provides better results.
It should be preferred unless the metadata-extractor libraries
are unavailable.

ext:pygmentize
ext:pygmentize — Syntax highlight a listing with pygmentize.

Function:
{http://docbook.org/extensions/xslt}pygmentize#1

{http://docbook.org/extensions/xslt}pygmentize#2

{http://docbook.org/extensions/xslt}pygmentize#3

Synopsis
	ext:pygmentize($listing as xs:string) as xs:string

	ext:pygmentize($listing as xs:string,
		$options as item()) as xs:string

	ext:pygmentize($listing as xs:string,
		$options as item(),
	$pygments-options as map(xs:string,xs:string)) as xs:string

Description

This extension function runs the pygmentize command to
add syntax highlighting to a listing.

The second argument can either be map, in which case the key-value pairs of the map
constitute the options, or it can be a single string. If it’s a single string, it’s
interpreted as if it was a map with the key “language” and the string
as the value.

The third argument must be a map. Each key-value pair will be passed to
pygmentize as “-Pkey=value”.

The function returns the string output from pygmentize. It must
be parsed with parse-xml if you wish to process it as XML.

Be aware that pygmentize strips leading blank
lines off of the source listing. If you’re selecting portions of a
listing with XInclude, make sure not to select leading blank lines in
the listing if you are trying to accurately count the lines.

ext:pygmentize-available
ext:pygmentize-available — Returns true if pygmentize is available.

Function:
{http://docbook.org/extensions/xslt}pygmentize-available#0

Synopsis
	ext:pygmentize-available() as xs:boolean

Description

In order to run Pygments on listings,
the ext:pygmentize() extension function must be available
and the pygmentize command must be available
on the host system.

This function returns true if it successfully finds the
pygmentize command on the system path.

ext:validate-with-relax-ng
ext:validate-with-relax-ng — Returns the current working directory.

Function:
{http://docbook.org/extensions/xslt}validate-with-relax-ng#2

{http://docbook.org/extensions/xslt}validate-with-relax-ng#3

Synopsis
	ext:validate-with-relax-ng($node as node(),
		$schema as item()) as map(xs:string, item())

	ext:validate-with-relax-ng($node as node(),
		$schema as item(),
	$options as map(xs:string, xs:string)) as map(xs:string, item())

Description

This extension function validates the node provided
against the schema. The schema can be either a
string (the URI of the RELAX NG grammar file) or a node (a RELAX NG grammar
document). There is no support for the RELAX NG Compact Syntax at this time.

The available options are assert-valid which defaults to
true()
and dtd-compatibility which isn’t actually supported yet.

If assert-valid is true() and the document is
not valid according to the grammar provided, an exception is raised.

If assert-valid is false(), or the document
is valid, the map returned will contain the following keys:

	valid
	A boolean indicating whether or not the document was valid.

	document
	The validated document. Today, this always returns the same node, but
it may eventually return an augmented document.

	errors
	An array of maps containing the type
(warning, error, or fatal-error),
message,
line, and column where an error occurred.
If the document is valid, the errors key will not be present.

ext:xinclude
ext:xinclude — Performs XInclude processing.

Function:
{http://docbook.org/extensions/xslt}xinclude#1

{http://docbook.org/extensions/xslt}xinclude#2

Synopsis
	ext:xinclude($node as node()) as node()*

	ext:xinclude($node as node(),
		$options as map(xs:QName, item()*)) as node()*

Description

Performs XInclude processing on node and all of its
descendants. The options “fixup-xml-base” and
“fixup-xml-lang” are true() by default.

f:absolute-length
f:absolute-length — Returns the absolute length of a unit of measurement.

Function:
{http://docbook.org/ns/docbook/functions}absolute-length#1

Defined in:
modules/units.xsl

Used in:
modules/objects.xsl, modules/tablecals.xsl

Used by:
f:css-length()

Synopsis
	f:absolute-length($length as map(*)) as xs:double

Description

For a given unit of measurement, returns the absolute length in terms
of pixels. For a discussion of units, see Section 5.2, “Lengths and units”.

See also
$pixels-per-inch,
$default-length-magnitude, and
$default-length-unit.

f:attributes
f:attributes — Returns the attribute that apply to an output element.

Function:
{http://docbook.org/ns/docbook/functions}attributes#2

{http://docbook.org/ns/docbook/functions}attributes#4

Defined in:
modules/functions.xsl (2)

Used in:
modules/functions.xsl, modules/inlines.xsl, modules/attributes.xsl

Used by:
f:attributes(), t:inline

Synopsis
	f:attributes($node as element(),
		$attributes as attribute()*) as attribute()*

	f:attributes($node as element(),
		$attributes as attribute()*,
	$extra-classes as xs:string*,
	$exclude-classes as xs:string*) as attribute()*

Description

Most output elements have attributes: any xml:id
attributes in the source are reflected in the output as
id attributes, most elements get a class
attribute, etc. The f:attributes() function is called to determine
what those attributes should be.

In practice, the way this usually works is the element is processed in the
m:attributes mode and that template calls f:attributes()
to generate the actual attribute nodes.

f:cals-colsep
f:cals-colsep — Returns the “colsep” value associated with a CALS table cell.

Function:
{http://docbook.org/ns/docbook/functions}cals-colsep#3

Defined in:
modules/tablecals.xsl

Used in:
modules/tablecals.xsl

Synopsis
	f:cals-colsep($row as element(db:row),
		$cell as map(*),
	$last-col-colsep as xs:boolean) as xs:string?

Description

The column separator, or “colsep”, associated with a CALS table cell
depends on a variety of factors: colspec, and spanspec
elements as well as the attributes on the cell itself and its ancestors.

This function returns the value that applies to the specified cell.

f:cals-rowsep
f:cals-rowsep — Returns the “rowsep” value associated with a CALS table cell.

Function:
{http://docbook.org/ns/docbook/functions}cals-rowsep#3

Defined in:
modules/tablecals.xsl

Used in:
modules/tablecals.xsl

Synopsis
	f:cals-rowsep($row as element(db:row),
		$cell as map(*),
	$last-row-rowsep as xs:boolean) as xs:string?

Description

The row separator, or “rowsep”, associated with a CALS table cell
depends on a variety of factors: colspec, and spanspec
elements as well as the attributes on the cell itself and its ancestors.

This function returns the value that applies to the specified cell.

f:check-gentext
f:check-gentext — Returns generated text.

Description

Generated text has been reworked, see Chapter 4, Localization.

f:chunk
f:chunk — Returns chunking attributes.

Function:
{http://docbook.org/ns/docbook/functions}chunk#1

Defined in:
modules/chunk.xsl

Used in:
modules/attributes.xsl

Synopsis
	f:chunk($node as element()) as attribute()*

Description

This function returns the
db-chunk and perhaps other chunking-related attributes
for the given node.

f:chunk-filename
f:chunk-filename — Returns the filename to use for a particular chunk.

Function:
{http://docbook.org/ns/docbook/functions}chunk-filename#1

Defined in:
modules/chunk.xsl

Used in:
modules/chunk.xsl

Used by:
f:chunk()

Synopsis
	f:chunk-filename($node as element()) as xs:string

Description

When chunking, see Section 2.6, ““Chunked” output”, this function is
called to determine the filename for a chunk. The default implementation considers
relevant db processing instructions
(filename,
href, and
basename pseudo-attributes) as well as the generated ID of the element.

f:chunk-title
f:chunk-title — Returns the title of a chunk.

Function:
{http://docbook.org/ns/docbook/functions}chunk-title#1

Defined in:
modules/chunk-cleanup.xsl

Used in:
modules/chunk-cleanup.xsl

Used by:
t:bottom-nav

Synopsis
	f:chunk-title($chunk as element()?) as node()*

Description

When the title of a neighboring chunk is required (for header or
footer navigation, for example), this function can be used to obtain
the title of that chunk.

This function must return the HTML-formatted title, not the DocBook title.

f:css-length
f:css-length — Returns a length in the format of a CSS property.

Function:
{http://docbook.org/ns/docbook/functions}css-length#2

Defined in:
modules/objects.xsl

Used in:
modules/objects.xsl

Synopsis
	f:css-length($property as xs:string,
		$length as map(*)?) as xs:string?

Description

Returns the CSS property specified with the corresponding length, if the length
exists. Returns the empty sequence otherwise.

f:css-property
f:css-property — Returns a CSS property for a given value.

Function:
{http://docbook.org/ns/docbook/functions}css-property#2

Defined in:
modules/objects.xsl

Used in:
modules/objects.xsl

Used by:
f:css-length()

Synopsis
	f:css-property($property as xs:string,
		$value as xs:string?) as xs:string?

Description

If the specified value exists, a string formatted as a CSS
property is returned. If the value doesn’t exist, an empty sequence is
returned.

f:date-format
f:date-format — Returns the format string for a date.

Function:
{http://docbook.org/ns/docbook/functions}date-format#1

Defined in:
modules/functions.xsl

Used in:
modules/inlines.xsl

Synopsis
	f:date-format($context as element()) as xs:string

Description

Dates may be stored in a variety of formats and the pubdate
element even allows inline markup. The f:date-format() function
determines how a date will be formatted:

	If the date contains embedded markup, the special value
“apply-templates” is returned to indicate that string formatting
isn’t appropriate.

	If the date conforms to an ISO 8601 date, the
$date-date-format string is returned.

	If the date conforms to an ISO 8601 dateTime, the
$date-dateTime-format string is returned.

	If the date does not conform to either of those date formats,
“apply-templates” is returned.

If the date conforms to a date or dateTime, the author may override
the format string by providing a
db processing instruction with a
date-format pseudo-attribute.

Example 1, “Several dates in ISO 8601 formats” shows an example of
several dates that may be formatted in more familiar forms.

 |<para>The Unix epoch begins at
 |<date>1970-01-01T00:00:00Z</date>.
 |Grace Hopper was born on <date>1906-12-09</date>.
 |That was a <date><?db date-format="[F]"?>1906-12-09</date>.
 |I was born on a <date>Friday</date>.</para>

Example 1. Several dates in ISO 8601 formats

With default formats, these are formatted as shown:

The Unix epoch begins at
00:00 01 Jan 1970.
Grace Hopper was born on 09 Dec 1906.
That was a Sunday.
I was born on a Friday.

f:empty-length
f:empty-length — Returns a map that represents an empty length.

Function:
{http://docbook.org/ns/docbook/functions}empty-length#0

Defined in:
modules/units.xsl

Used in:
modules/units.xsl, modules/objects.xsl

Used by:
f:parse-length(), f:object-width(), f:object-height(), f:object-contentwidth(), f:object-contentheight()

Synopsis
	f:empty-length() as map(*)

Description

Lengths are compound objects. Lengths consist of
a magnitude (a number) and a unit: 3 inches, for example, or 11.9
barleycorns⌖2 in the case of absolute
lengths. For relative lengths, the unit is something relative like percent.

These are represented as maps internally and f:empty-length()
returns a length with no magnitude or units.

Annotations

⌖2

Yes, that’s a real unit. It’s equal to ⅓ of an inch. I’ll leave
it to
Wikipedia to explain the details. Just looking at the chart of
imperial units makes me want to add them all!

[image: English imperial lengths]

Image credit: 42CrMo4, Christoph Päper

f:equal-lengths
f:equal-lengths — Returns true if two lengths are equal.

Function:
{http://docbook.org/ns/docbook/functions}equal-lengths#2

Defined in:
modules/units.xsl

Used in:
modules/objects.xsl

Used by:
f:mediaobject-viewport()

Synopsis
	f:equal-lengths($a as map(*)?,
		$b as map(*)?) as xs:boolean

Description

Lengths (see Section 5.2, “Lengths and units”) are stored in maps and so are not
directly comparable. This function returns true if two lengths are equal.

f:generate-id
f:generate-id — Generate a unique identifier for an element.

Function:
{http://docbook.org/ns/docbook/functions}generate-id#1

{http://docbook.org/ns/docbook/functions}generate-id#2

Defined in:
modules/functions.xsl (2)

Used in:
modules/functions.xsl, modules/unhandled.xsl, modules/index.xsl, modules/programming.xsl, modules/verbatim.xsl, modules/tablehtml.xsl, modules/xlink.xsl, modules/links.xsl, modules/attributes.xsl, modules/annotations.xsl, modules/chunk.xsl

Used by:
f:generate-id(), f:generate-id(), f:unique-id(), f:href(), f:id(), f:chunk-filename()

Synopsis
	f:generate-id($node as element()) as xs:string

	f:generate-id($node as element(),
		$use-xml-id as xs:boolean) as xs:string

Description

This function returns a unique ID for an element. The ID is
generated from the names of the ancestors and preceding siblings of
the element. This value will be consistent across different
transformations as long as the ancestors and preceding siblings remain
unchanged.

If use-xml-id is true
and there’s an element with a xml:id attribute among
the ancestors, the unique identifier is rooted at that element, rather
than traversing all the way to the root of the document.

Disabling this feature by setting use-xml-id
to false allows for the creation of globally unique IDs with
f:unique-id().

f:gentext
f:gentext — Returns generated text.

Description

Generated text now uses m:gentext.
See Chapter 4, Localization.

f:gentext-letters
f:gentext-letters — Returns the letters for the in-scope language.

Function:
{http://docbook.org/ns/docbook/functions}gentext-letters#1

Defined in:
modules/functions.xsl

Used in:
Not used.

Synopsis
	f:gentext-letters($node as element()) as element(l:letters)

Description

This function works calls f:language() on the specified
node and then calls f:gentext-letters-for-language() with that
language.

f:gentext-letters-for-language
f:gentext-letters-for-language — Returns the letters for a language.

Function:
{http://docbook.org/ns/docbook/functions}gentext-letters-for-language#1

Defined in:
modules/functions.xsl

Used in:
modules/functions.xsl, modules/index.xsl

Used by:
f:gentext-letters()

Synopsis
	f:gentext-letters-for-language($node as element()) as element(l:letters)

Description

Returns a language-specific list of letters. These are used, for example,
to construct the divisions in an index.

f:highlight-verbatim
f:highlight-verbatim — Syntax highlight verbatim element?

Function:
{http://docbook.org/ns/docbook/functions}highlight-verbatim#1

Defined in:
modules/verbatim.xsl

Used in:
modules/verbatim.xsl

Synopsis
	f:highlight-verbatim($node as element()) as xs:boolean

Description

Returns true if the specified verbatim environment should have
syntax highlighting applied to it. This depends on the
language specified on the environment and the
$verbatim-syntax-highlight-languages parameter.

f:href
f:href — Returns the href link to a node.

Function:
{http://docbook.org/ns/docbook/functions}href#2

Defined in:
modules/functions.xsl

Used in:
modules/toc.xsl, modules/glossary.xsl, modules/index.xsl, modules/programming.xsl, modules/objects.xsl, modules/xlink.xsl, modules/links.xsl

Used by:
t:index-zone-reference

Synopsis
	f:href($context as node(),
		$node as element()) as xs:string

Description

This function generates a value for an HTML href attribute
at the position of the context that will link to the node.

f:id
f:id — Returns an ID for the element.

Function:
{http://docbook.org/ns/docbook/functions}id#1

Defined in:
modules/functions.xsl

Used in:
modules/toc.xsl, modules/blocks.xsl, modules/objects.xsl, modules/footnotes.xsl, modules/links.xsl

Used by:
t:mediaobject-img

Synopsis
	f:id($node as element()) as xs:string

Description

This function returns the ID of the element. If the element has
an xml:id attribute, the value of that attribute is returned.
Otherwise, the function constructs a unique ID value for the element.

The simplest way to construct a unique ID is with the f:generate-id()
function. However, those values are only unique within the context of a single transformation
and tend to vary over time. This can break anchors used in published documents and leads
to spurious differences between documents.

The stylesheets generate their own unique IDs with f:generate-id().

f:in-scope-language
f:in-scope-language — Returns the in-scope-language associated with an element.

Function:
{http://docbook.org/ns/docbook/functions}in-scope-language#1

Defined in:
modules/gentext.xsl

Used in:
Not used.

Since:
2.0.0

Synopsis
	f:in-scope-language($target as node()) as xs:string

Description

Returns the value of the nearest in-scope xml:lang attribute
or $default-language if no such attribute exists.

f:intra-number-separator
f:intra-number-separator — Return the intra-number separator.

Description

Separators are now part of the generated text template,
see Chapter 4, Localization.

f:is-empty-length
f:is-empty-length — Tests if a length is empty.

Function:
{http://docbook.org/ns/docbook/functions}is-empty-length#1

Defined in:
modules/units.xsl

Used in:
modules/units.xsl, modules/objects.xsl

Used by:
f:equal-lengths(), f:mediaobject-viewport()

Synopsis
	f:is-empty-length($length as map(*)?) as xs:boolean

Description

Returns true if the length is empty.
For a discussion of units and lengths, see Section 5.2, “Lengths and units”.

f:is-true
f:is-true — Determines if a given value represents “true”

Function:
{http://docbook.org/ns/docbook/functions}is-true#1

Defined in:
modules/functions.xsl

Used in:
docbook.xsl, main.xsl, modules/variable.xsl, modules/head.xsl, modules/titles.xsl, modules/gentext.xsl, modules/toc.xsl, modules/index.xsl, modules/info.xsl, modules/blocks.xsl, modules/objects.xsl, modules/verbatim.xsl, modules/inlines.xsl, modules/xlink.xsl, modules/chunk-cleanup.xsl, modules/chunk-output.xsl

Used by:
$v:verbatim-number-first-line, $v:chunk-renumber-footnotes, $v:title-groups, t:generate-index, t:person-name-first-last, f:mediaobject-amend-uri(), f:verbatim-numbered(), f:verbatim-trim-trailing(), t:docbook

Synopsis
	f:is-true($value) as xs:boolean

Description

There are several conventions for indicating “true” or “false”.
XSLT uses the words “yes” and “no” in many places. The XML Schema data
type for xs:boolean uses “true” and “false” but also “1”
and “0”.

The f:is-true() function returns
true() for any of “true()”, “yes”, “true”,
or a value that can be cast to an integer if that integer is not
zero. It returns
false()
for any of “false()”, “no”, “false”, a value that can be
cast to an integer that is zero, or the empty sequence.

It reports an error for any other value and returns “true()”.

f:l10n-language
f:l10n-language — Returns the best matching localization language.

Function:
{http://docbook.org/ns/docbook/functions}l10n-language#1

Defined in:
modules/functions.xsl

Used in:
modules/gentext.xsl, modules/l10n.xsl, modules/functions.xsl, modules/index.xsl, modules/inlines.xsl

Used by:
f:l10n-token(), f:gentext-letters-for-language(), t:generate-index

Synopsis
	f:l10n-language($target as element()) as xs:string

Description

This function returns the localization language that best
matches the language of the $target node. If
$gentext-language is specified, it is always returned.
The $default-language
will be returned if there is no localization available for the declared
language of the $target.

f:l10n-token
f:l10n-token — Returns the gentext token for a key.

Function:
{http://docbook.org/ns/docbook/functions}l10n-token#2

{http://docbook.org/ns/docbook/functions}l10n-token#3

Defined in:
modules/l10n.xsl (2)

Used in:
modules/l10n.xsl, modules/titles.xsl, modules/gentext.xsl, modules/biblio690.xsl, modules/chunk-output.xsl

Since:
2.0.0

Synopsis
	f:l10n-token($context as element(),
		$key as xs:string) as item()*

	f:l10n-token($context as element(),
		$lang as xs:string,
	$key as xs:string) as item()*

Description

This function returns the gentext token for a key. This is usually
accomplished by looking in the localization,
but if you need an override for a specific element, you can replace this
function.

f:label-separator
f:label-separator — Returns the label separator.

Function:
{http://docbook.org/ns/docbook/functions}label-separator#1

Defined in:
modules/functions.xsl

Used in:
Not used.

Synopsis
	f:label-separator($node as element()) as node()*

Description

The label separator separates a label from the number or title that follows it.

f:language
f:language — Returns the language associated with an element.

Description

Renamed f:in-scope-language().

f:languages
f:languages — Returns all of the localizations used by a document.

Function:
{http://docbook.org/ns/docbook/functions}languages#1

Defined in:
modules/gentext.xsl

Used in:
Not used.

Since:
2.0.0

Synopsis
	f:languages($context as document-node()) as xs:string+

Description

Returns all of the localizations that might be used in formatting this
document.

f:length-string
f:length-string — Returns the string representation of a length.

Function:
{http://docbook.org/ns/docbook/functions}length-string#1

Defined in:
modules/units.xsl

Used in:
Not used.

Synopsis
	f:length-string($length as map(*)?) as xs:string?

Description

For a given length (see Section 5.2, “Lengths and units”), returns the relative
or absolute length formatted as a string. Relative lengths are formatted
as the length followed by a literal “*” (e.g., “3*”). Absolute lengths
are formatted as the length followed by the unit (e.g., “2.54cm”).

f:length-units
f:length-units — Returns the units associated with a length.

Function:
{http://docbook.org/ns/docbook/functions}length-units#1

Defined in:
modules/units.xsl

Used in:
Not used.

Synopsis
	f:length-units($length as xs:string?) as xs:string?

Description

For a given length (see Section 5.2, “Lengths and units”), returns the units
associated with the length. Returns an empty sequence for relative lengths.

f:locales
f:locales — Returns the locales detected in the document.

Description

Replaced by f:languages().

f:make-length
f:make-length — Construct a length from constituent parts.

Function:
{http://docbook.org/ns/docbook/functions}make-length#1

{http://docbook.org/ns/docbook/functions}make-length#2

{http://docbook.org/ns/docbook/functions}make-length#3

Defined in:
modules/units.xsl (3)

Used in:
modules/units.xsl, modules/objects.xsl

Used by:
f:make-length(), f:mediaobject-viewport(), f:object-contentwidth(), f:object-contentheight()

Synopsis
	f:make-length($relative as xs:double) as map(*)

	f:make-length($magnitude as xs:double,
		$unit as xs:string) as map(*)

	f:make-length($relative as xs:double,
		$magnitude as xs:double,
	$unit as xs:string) as map(*)

Description

These functions construct a length (see Section 5.2, “Lengths and units”) from
either a relative magnitude, an absolute magnitude and a unit, or
both.

f:mediaobject-amend-uri
f:mediaobject-amend-uri — Amend the URI for media objects.

Function:
{http://docbook.org/ns/docbook/functions}mediaobject-amend-uri#1

Defined in:
modules/objects.xsl

Used in:
modules/objects.xsl

Synopsis
	f:mediaobject-amend-uri($uri as xs:string) as xs:string

Description

After the media object URI has been calculated,
f:mediaobject-amend-uri() is called. This is an opportunity
to update the URI so that the media object will be found.

The default version of this function returns the URI unchanged unless
$mediaobject-grouped-by-type is true.
If media objects are grouped by type, the media object type is added to the
URI. The media object type is determined by calling
f:mediaobject-type().

Suppose, for example, that the calculated URI is
file:///path/to/image.jpg and the
f:mediaobject-type() returns “jpeg”. In that
case, the URI returned will be
file:///path/to/jpeg/image.jpg.

☝
Important
Consider how this function interacts with
the m:mediaobject-output-adjust mode. In particular, beware that
the value processed in the
m:mediaobject-output-adjust mode will already
have been updated by f:mediaobject-amend-uri().

f:mediaobject-input-base-uri
f:mediaobject-input-base-uri — Identify the input base URI for media.

Function:
{http://docbook.org/ns/docbook/functions}mediaobject-input-base-uri#1

Defined in:
modules/objects.xsl

Used in:
modules/objects.xsl

Synopsis
	f:mediaobject-input-base-uri($node as element()) as xs:string

Description

This value is calculated from the
$mediaobject-input-base-uri parameter. If the
parameter is the empty string, then this value is the empty sequence. Otherwise,
this value is the absolute URI that results from resolving the value of the
$mediaobject-input-base-uri parameter against
the base URI of the input document.

In previous versions of the stylesheet, this value was computed once
as a global variable. It was changed to a function because of failures
resolving the base URI of documents when using XSpec.

f:mediaobject-type
f:mediaobject-type — Return the type of a media object.

Function:
{http://docbook.org/ns/docbook/functions}mediaobject-type#1

Defined in:
modules/objects.xsl

Used in:
modules/objects.xsl

Used by:
f:mediaobject-amend-uri()

Synopsis
	f:mediaobject-type($uri as xs:string) as xs:string?

Description

If
$mediaobject-grouped-by-type is true,
this function will be called to determine the type of each media object.
The default version simply returns the media object extension, if there is one.
(The type of image.png is png.)

f:mediaobject-viewport
f:mediaobject-viewport — Construct the “viewport” for media objects.

Function:
{http://docbook.org/ns/docbook/functions}mediaobject-viewport#1

Defined in:
modules/objects.xsl

Used in:
modules/objects.xsl

Synopsis
	f:mediaobject-viewport($info as map(*)) as map(*)

Description

If your DocBook markup for media objects includes any of the size or scaling
adjustment attributes, this function is called to construct the HTML markup that
implements those adjustments.

f:number-separator
f:number-separator — Returns the number separator.

Description

Separators are now part of the generated text template,
see Chapter 4, Localization.

f:object-align
f:object-align — Returns the alignment of a media object.

Function:
{http://docbook.org/ns/docbook/functions}object-align#1

Defined in:
modules/objects.xsl

Used in:
modules/objects.xsl

Used by:
f:mediaobject-viewport()

Synopsis
	f:object-align($info as map(*)) as xs:string?

Description

By default, this function simply returns the value of the object’s
align attribute.

f:object-contentheight
f:object-contentheight — Returns the content height of an object.

Function:
{http://docbook.org/ns/docbook/functions}object-contentheight#2

Defined in:
modules/objects.xsl

Used in:
modules/objects.xsl

Used by:
f:mediaobject-viewport()

Synopsis
	f:object-contentheight($info as map(*),
		$intrinsicheight as map(*)) as map(*)

Description

Returns the content height, for reasons of historical accident,
in the contentdepth attribute. This function returns the
height of an object as a length (see Section 5.2, “Lengths and units”), if it
has one. If the height is specified as a percentage, and the intrinsic size
of the object is known, the an absolute length equal to that percentage of the
intrinsic size is returned.

If $image-ignore-scaling is true, or no
contentdepth is specified for the object, the empty sequence is
returned.

f:object-contentwidth
f:object-contentwidth — Returns the content width of an object.

Function:
{http://docbook.org/ns/docbook/functions}object-contentwidth#2

Defined in:
modules/objects.xsl

Used in:
modules/objects.xsl

Used by:
f:mediaobject-viewport()

Synopsis
	f:object-contentwidth($info as map(*),
		$intrinsicwidth as map(*)) as map(*)

Description

Returns the content width. This function returns the
width of an object as a length (see Section 5.2, “Lengths and units”), if it
has one. If the width is specified as a percentage, and the intrinsic size
of the object is known, the an absolute length equal to that percentage of the
intrinsic size is returned.

If $image-ignore-scaling is true, or no
contentwidth is specified for the object, the empty
sequence is returned.

f:object-height
f:object-height — Returns the height (depth) of a mediaobject.

Function:
{http://docbook.org/ns/docbook/functions}object-height#1

Defined in:
modules/objects.xsl

Used in:
modules/objects.xsl

Used by:
f:mediaobject-viewport(), f:object-scalefit()

Synopsis
	f:object-height($info as map(*)) as map(*)

Description

The height of a mediaobject is specified, for reasons of historical
accident, in the depth attribute. This function returns the
height of an object as a length (see Section 5.2, “Lengths and units”), if it has one.
If $image-ignore-scaling is true, or no depth
is specified for the object, the empty sequence is returned.

f:object-properties
f:object-properties — Returns the properties of an object.

Function:
{http://docbook.org/ns/docbook/functions}object-properties#1

{http://docbook.org/ns/docbook/functions}object-properties#2

Defined in:
modules/objects.xsl (2)

Used in:
modules/objects.xsl

Used by:
f:object-properties()

Synopsis
	f:object-properties($uri as xs:string) as map(xs:string, xs:anyAtomicType)

	f:object-properties($uri as xs:string,
		$image-file as xs:boolean) as map(xs:string, xs:anyAtomicType)

Description

If the extension functions
are available, the stylesheets will interrogate images for their
properties. The goal is to return, at a minimum, the height and width
of the image. This is used to compute viewport and scaling factors.
If the image metadata extension is available, then considerably more information
my be returned in the map.

For example, the image metadata properties of the Amaryllis photograph
in Figure 1, “An amaryllis” are:

	Property name	Property value a
	apple-multi-language-profile-name	38 hrHR(LCD u boji) koKR(컬러 LCD) nb…
	background-color	R 255, G 255, B 255
	bits-per-sample	8
	blue-colorant	(0.1431, 0.0606, 0.7141)
	blue-parametric-trc	para (0x70617261): 32 bytes
	blue-trc	0.0, 0.0000763, 0.0001526, 0.000228…
	blue-x	15000
	blue-y	6000
	class	Display Device
	cmm-type	Lino
	color-space	RGB
	color-type	True Color with Alpha
	component-1	Y component: Quantization table 0, …
	component-2	Cb component: Quantization table 1,…
	component-3	Cr component: Quantization table 1,…
	compression-type	Baseline
	data-precision	8 bits
	detected-file-type-long-name	Joint Photographic Experts Group
	detected-file-type-name	JPEG
	detected-mime-type	image/jpeg
	device-manufacturer	IEC
	device-mfg-description	IEC http://www.iec.ch
	device-model	sRGB
	device-model-description	IEC 61966-2.1 Default RGB colour sp…
	exif-image-height	1868 pixels
	exif-image-width	1516 pixels
	expected-file-name-extension	jpg
	filter-method	Adaptive
	green-colorant	(0.3851, 0.7169, 0.0971)
	green-parametric-trc	para (0x70617261): 32 bytes
	green-trc	0.0, 0.0000763, 0.0001526, 0.000228…
	green-x	30000
	green-y	60000
	height	256
	icc-profile-name	icc
	image-gamma	0.455
	image-height	336 pixels
	image-width	500 pixels
	interlace-method	No Interlace
	last-modification-time	2022-12-30T15:03:35
	luminance	(76.0365, 80, 87.1246)
	make-and-model	mmod (0x6D6D6F64): 40 bytes
	measurement	1931 2° Observer, Backing (0, 0, 0)…
	media-black-point	(0, 0, 0)
	media-white-point	(0.9505, 1, 1.0891)
	native-display-information	ndin (0x6E64696E): 62 bytes
	number-of-components	3
	number-of-tables	4 Huffman tables
	orientation	Top, left side (Horizontal / normal…
	pixels-per-unit-x	5669
	pixels-per-unit-y	5669
	primary-platform	Microsoft Corporation
	profile-connection-space	XYZ
	profile-copyright	Copyright (c) 1998 Hewlett-Packard …
	profile-date/time	1998-02-09T06:49:00
	profile-description	sRGB IEC61966-2.1
	profile-size	3144
	red-colorant	(0.4361, 0.2225, 0.0139)
	red-parametric-trc	para (0x70617261): 32 bytes
	red-trc	0.0, 0.0000763, 0.0001526, 0.000228…
	red-x	64000
	red-y	33000
	resolution-unit	Inch
	resolution-units	inch
	signature	acsp
	tag-count	17
	technology	CRT
	textual-data	xmp:UserComment: Screenshot
	thumbnail-height-pixels	0
	thumbnail-width-pixels	0
	unit-specifier	Metres
	unknown-tag-(0x76636770)	vcgp (0x76636770): 56 bytes
	user-comment	Screenshot
	version	2.1.0
	video-card-gamma	vcgt (0x76636774): 48 bytes
	viewing-conditions	view (0x76696577): 36 bytes
	viewing-conditions-description	Reference Viewing Condition in IEC6…
	white-point-x	31270
	white-point-y	32900
	width	400
	x-resolution	72 dots
	xyz-values	0.964 1 0.825
	y-resolution	72 dots
	aSome values
 have been truncated to prevent the table from becoming unwieldy.
 These values an be identified by a trailing ellipsis (…).

[image: A photograph of an amaryllis]

Figure 1. An amaryllis

f:object-scale
f:object-scale — Returns the scaling factor for an object.

Function:
{http://docbook.org/ns/docbook/functions}object-scale#1

Defined in:
modules/objects.xsl

Used in:
modules/objects.xsl

Used by:
f:mediaobject-viewport()

Synopsis
	f:object-scale($info as map(*)) as xs:double

Description

Returns the scaling factor for an object. Scaling only applies if
$image-ignore-scaling is false and the object has a
scale attribute.

f:object-scalefit
f:object-scalefit — Scale object to fit?

Function:
{http://docbook.org/ns/docbook/functions}object-scalefit#1

Defined in:
modules/objects.xsl

Used in:
modules/objects.xsl

Used by:
f:mediaobject-viewport()

Synopsis
	f:object-scalefit($info as map(*)) as xs:boolean

Description

This function determines whether or not an object should be scaled
to fit its container.

f:object-valign
f:object-valign — Returns the vertical alignment of a media object.

Function:
{http://docbook.org/ns/docbook/functions}object-valign#1

Defined in:
modules/objects.xsl

Used in:
modules/objects.xsl

Used by:
f:mediaobject-viewport()

Synopsis
	f:object-valign($info as map(*)) as xs:string?

Description

By default, this function simply returns the value of the object’s
valign attribute. If it doesn’t have a
valign attribute, the value “middle” is returned, because
that’s what previous versions of stylesheets for DocBook did.

f:object-width
f:object-width — Returns the width of a mediaobject.

Function:
{http://docbook.org/ns/docbook/functions}object-width#1

Defined in:
modules/objects.xsl

Used in:
modules/objects.xsl

Used by:
f:mediaobject-viewport(), f:object-scalefit()

Synopsis
	f:object-width($info as map(*)) as map(*)

Description

This function returns the
width of an object as a length (see Section 5.2, “Lengths and units”), if it has one.
If $image-ignore-scaling is true, or no width
is specified for the object, the empty length is returned.

f:orderedlist-item-number
f:orderedlist-item-number — Returns the item number of an item in an ordered list.

Function:
{http://docbook.org/ns/docbook/functions}orderedlist-item-number#1

Defined in:
modules/functions.xsl

Used in:
modules/titles.xsl, modules/functions.xsl

Used by:
f:orderedlist-item-numeration()

Synopsis
	f:orderedlist-item-number($node as element(db:listitem)) as xs:integer+

Description

Returns the item number of a list item. This is always an integer, even if it will
be formatted as a letter, roman numeral, or other symbol. For nested lists, this function
returns the fully qualified item number. For example, for the second item in the fourth item in the
third item of a list, it will return (2, 4, 3).

f:orderedlist-item-numeration
f:orderedlist-item-numeration — Returns the item numeration format for an ordered list.

Function:
{http://docbook.org/ns/docbook/functions}orderedlist-item-numeration#1

Defined in:
modules/functions.xsl

Used in:
modules/titles.xsl, modules/lists.xsl

Synopsis
	f:orderedlist-item-numeration($node as element(db:listitem)) as xs:string

Description

Computes the numeration for the specified list item.
See $orderedlist-item-numeration.

f:orderedlist-startingnumber
f:orderedlist-startingnumber — Returns the starting number of an ordered list.

Function:
{http://docbook.org/ns/docbook/functions}orderedlist-startingnumber#1

Defined in:
modules/functions.xsl

Used in:
modules/functions.xsl, modules/lists.xsl

Used by:
f:orderedlist-startingnumber(), f:orderedlist-item-number()

Synopsis
	f:orderedlist-startingnumber($list as element(db:orderedlist)) as xs:integer

Description

In most orderedlist elements, the first item in the list
is item number “1”. However, the startingnumber attribute can specify
a different initial number and, in the case of continued lists, the starting number
depends on the ending number of the preceding list.

The f:orderedlist-startingnumber() returns the number
of the first list item in an ordered list.

f:parse-length
f:parse-length — Parse a string into a length.

Function:
{http://docbook.org/ns/docbook/functions}parse-length#1

Defined in:
modules/units.xsl

Used in:
modules/variable.xsl, modules/units.xsl, modules/objects.xsl, modules/tablecals.xsl

Used by:
$v:nominal-page-width, $v:image-nominal-width, $v:image-nominal-height, f:length-units()

Synopsis
	f:parse-length($length as xs:string?) as map(*)

Description

This function parses a string such as “4in” or “3.14cm” or “50%”
into a length. It will fall back to a distance of the
$default-length-magnitude and
$default-length-unit if the string cannot be parsed
as a length.

f:pi
f:pi — Returns DocBook processing-instruction property values.

Function:
{http://docbook.org/ns/docbook/functions}pi#2

{http://docbook.org/ns/docbook/functions}pi#3

Defined in:
modules/functions.xsl (2)

Used in:
modules/functions.xsl, modules/bibliography.xsl, modules/index.xsl, modules/lists.xsl, modules/blocks.xsl, modules/programming.xsl, modules/objects.xsl, modules/verbatim.xsl, modules/xlink.xsl, modules/info.xsl, modules/chunk.xsl

Used by:
f:pi(), f:verbatim-style(), f:verbatim-highlight(), f:xlink-style(), f:date-format(), f:verbatim-numbered(), f:verbatim-trim-trailing(), f:chunk-filename()

Synopsis
	f:pi($context as node()?,
		$property as xs:string) as xs:string?

	f:pi($context as node()?,
		$property as xs:string,
	$default as xs:string*) as xs:string*

Description

Several DocBook elements have alternate presentations that can be
specified with global parameters. Many of them can also be set on a per-element
basis with a db processing instruction.
The date format, for example, can be changed in this way as described
in the f:date-format() function.

The f:pi() function takes a context and the name
of a property. It returns the value specified for that property from all of the
db processing instructions in the
specified context. The three argument version allows you to specify a default
value. It will be returned if there are no values specified for the property
in that context.

f:pi-attributes
f:pi-attributes — Returns processing-instruction pseudo-attributes as attributes.

Function:
{http://docbook.org/ns/docbook/functions}pi-attributes#1

Defined in:
modules/functions.xsl

Used in:
modules/functions.xsl, modules/blocks.xsl, modules/objects.xsl, modules/verbatim.xsl, modules/tablecals.xsl, modules/inlines.xsl

Synopsis
	f:pi-attributes($pis as processing-instruction()*) as element()?

Description

Using pseudo-attributes in a
db processing instruction is a convenient mechanism
for providing additional options to the stylesheets. But processing them
is tedious. This function gathers together the pseudo-attributes specified
in a series of processing instructions and returns them as attributes on
an element. If the same property occurs more than once in the sequence,
the last value will be returned.

f:post-label-punctuation
f:post-label-punctuation — Punctuation that follows a label.

Description

Generated text has been reworked, see Chapter 4, Localization.

f:refsection
f:refsection — Is this a section in a refentry?

Function:
{http://docbook.org/ns/docbook/functions}refsection#1

Defined in:
modules/functions.xsl

Used in:
modules/functions.xsl

Used by:
f:section()

Synopsis
	f:refsection($node as element()) as xs:boolean

Description

Returns true if the node is a section in a refentry, a
refsection, refsect1, refsect2, or refsect3
element.

f:relative-length
f:relative-length — Returns the relative portion of a length, if it has one.

Function:
{http://docbook.org/ns/docbook/functions}relative-length#1

Defined in:
modules/units.xsl

Used in:
modules/tablecals.xsl

Synopsis
	f:relative-length($length as map(*)) as xs:double

Description

For a given length, returns the relative length if it has one.
For lengths that have no relative component, returns 0.0.
For a discussion of units, see Section 5.2, “Lengths and units”.

f:relative-path
f:relative-path — Give two file paths, what’s the relative path between them?

Function:
{http://docbook.org/ns/docbook/functions}relative-path#2

Defined in:
modules/functions.xsl

Used in:
modules/objects.xsl

Synopsis
	f:relative-path($base as xs:string,
		$path as xs:string) as xs:string

Description

This function attempts to determine the relative path between two
absolute paths. For example, given a base path of
/a/base/uri/path/ and a path of
/a/base/uri/with/other, the results is
../with/other.

If the path is an absolute URI (that isn’t a file: URI),
then the URI is returned unchanged.

f:section
f:section — Is this a section?

Function:
{http://docbook.org/ns/docbook/functions}section#1

Defined in:
modules/functions.xsl

Used in:
Not used.

Synopsis
	f:section($node as element()) as xs:boolean

Description

Returns true if the node is a section, a
section or sect1-5
element.

f:section-depth
f:section-depth — Returns the section depth of a node.

Function:
{http://docbook.org/ns/docbook/functions}section-depth#1

Defined in:
modules/functions.xsl

Used in:
modules/functions.xsl

Used by:
f:section-depth()

Synopsis
	f:section-depth($node as element()?) as xs:integer

Description

Returns the section depth of a node, that is, how many section elements
are among its ancestors.

f:spaces
f:spaces — Returns a string of spaces.

Function:
{http://docbook.org/ns/docbook/functions}spaces#1

Defined in:
modules/functions.xsl

Used in:
modules/functions.xsl, modules/programming.xsl

Used by:
f:spaces()

Synopsis
	f:spaces($length as item()*) as xs:string?

Description

This function returns a string of $length spaces.
If $length:

	is empty, an empty sequence is returned.
	is an integer, or castable to an integer, a string of that length is
returned. If the length is negative, an empty sequence is returned.
	is anything else, the length of the string value of $length
is used as the length.

In other words:

	f:spaces(()) is ‘()’,
	f:spaces(0) is ‘’ (no spaces),
	f:spaces(-1) is ‘()’,
	f:spaces(2) is ‘ ’ (two spaces),
	f:spaces("1") is ‘ ’ (one space), and
	f:spaces("test") is ‘ ’ (four spaces).

This function accepts a sequence to support the empty sequence.
If it’s passed a sequence of more than one item, it treats that as if
the string values of the items had been concatenated together. This can
have slightly surprising consequences as “('a', '3', '0')”
will return a string of three spaces whereas
“('0', '3', '0')” will return a string of thirty.

f:step-number
f:step-number — Returns the step number of a step in an procedure.

Function:
{http://docbook.org/ns/docbook/functions}step-number#1

Defined in:
modules/functions.xsl

Used in:
modules/functions.xsl

Used by:
f:step-numeration()

Synopsis
	f:step-number($node as element(db:step)) as xs:integer+

Description

Returns the step number of step in a procedure. This is always
an integer, even if it will be formatted as a letter, roman numeral,
or other symbol. For steps nested in side substeps, this
function returns the fully qualified item number. For example, for the
second substep in the fourth substep in the third step of a procedure, it will
return (2, 4, 3).

f:step-numeration
f:step-numeration — Returns the step numeration format for a step.

Function:
{http://docbook.org/ns/docbook/functions}step-numeration#1

Defined in:
modules/functions.xsl

Used in:
modules/titles.xsl, modules/lists.xsl

Synopsis
	f:step-numeration($node as element(db:step)) as xs:string

Description

Computes the numeration for the specified step.
See $procedure-step-numeration.

f:syntax-highlight
f:syntax-highlight — Performs syntax highlighting.

Function:
{http://docbook.org/ns/docbook/functions}syntax-highlight#1

{http://docbook.org/ns/docbook/functions}syntax-highlight#2

{http://docbook.org/ns/docbook/functions}syntax-highlight#3

Defined in:
highlight.xsl (3)

Used in:
modules/verbatim.xsl, highlight.xsl

Used by:
f:syntax-highlight(), f:syntax-highlight()

Synopsis
	f:syntax-highlight($source as xs:string)

	f:syntax-highlight($source as xs:string,
		$language as xs:string)

	f:syntax-highlight($source as xs:string,
		$options,
	$pyoptions as map(xs:string,xs:string)) as node()*

Description

Verbatim environments that specify a language can be syntax highlighted.
Syntax highlighting adds additional spans so that, for example, CSS can be used to make
keyword bold or quoted strings a different color.

Syntax highlighting requires an extension function. The list of languages that
will be syntax highlighted is taken from
$verbatim-syntax-highlight-languages.

f:target
f:target — Returns the element identified by a particular id.

Function:
{http://docbook.org/ns/docbook/functions}target#2

Defined in:
modules/functions.xsl

Used in:
modules/programming.xsl, modules/links.xsl

Synopsis
	f:target($id as xs:string,
		$context as node()) as element()*

Description

The item with the specified ID that is in the same document as
$context item is returned.

f:template
f:template — Returns the title page template for an element.

Function:
{http://docbook.org/ns/docbook/functions}template#2

Defined in:
modules/templates.xsl

Used in:
modules/templates.xsl

Used by:
t:biblioentry

Synopsis
	f:template($context as element(),
		$default as element()) as element()

Description

Returns the title page template that should be used for an element.
If no template is found, returns the $default template.

f:tokenize-on-char
f:tokenize-on-char — Tokenize a string at a specific character.

Function:
{http://docbook.org/ns/docbook/functions}tokenize-on-char#2

Defined in:
modules/functions.xsl

Used in:
modules/tablecals.xsl

Synopsis
	f:tokenize-on-char($string as xs:string,
		$char as xs:string) as xs:string*

Description

This function tokenizes a string at a specific character (not a regular
expression). If the specified character is a regular expression meta-character, it
is automatically escaped.

f:unique-id
f:unique-id — Returns an ID for the element.

Function:
{http://docbook.org/ns/docbook/functions}unique-id#1

Defined in:
modules/functions.xsl

Used in:
Not used.

Synopsis
	f:unique-id($node as element()) as xs:string

Description

This function returns a globally unique ID for the element. This allows
a transformation to disambiguate between different elements that happen to have
the same xml:id, as can occur if transclusion is performed.

f:uri-scheme
f:uri-scheme — Returns the scheme portion of a URI.

Function:
{http://docbook.org/ns/docbook/functions}uri-scheme#1

Defined in:
modules/functions.xsl

Used in:
modules/functions.xsl, modules/objects.xsl, modules/chunk-cleanup.xsl

Used by:
f:relative-path(), f:mediaobject-amend-uri()

Since:
2.0.6

Synopsis
	f:uri-scheme($uri as xs:string) as xs:string?

Description

If the URI begins with a scheme, this function returns the scheme.
Otherwise, it returns an empty sequence.

f:verbatim-highlight
f:verbatim-highlight — Returns the highlight properties for a verbatim environment.

Function:
{http://docbook.org/ns/docbook/functions}verbatim-highlight#1

Defined in:
modules/verbatim.xsl

Used in:
modules/verbatim.xsl

Synopsis
	f:verbatim-highlight($context as element()) as xs:string*

Description

Verbatim elements can be styled in a variety of ways, see
Section 5.3, “Verbatim styles”. This function returns the highlight settings
for a particular verbatim environment.

If the style for this environment is explicitly “plain”, then no
highlight settings are returned (this avoids a bunch of warning messages).
Otherwise, if a
db processing instruction with a
verbatim-highlight pseudo-attribute is present,
it is returned. If there’s no PI, then the default
settings for this kind of environment are returned.

f:verbatim-numbered
f:verbatim-numbered — Returns true if the listing should be numbered.

Function:
{http://docbook.org/ns/docbook/functions}verbatim-numbered#1

Defined in:
modules/verbatim.xsl

Used in:
modules/verbatim.xsl, modules/attributes.xsl

Synopsis
	f:verbatim-numbered($context as element()) as xs:boolean

Description

The f:verbatim-numbered() function returns true of
the specified verbatim listing should be numbered. This will be true if:

	The linenumbering attribute is specified and has the
value numbered,

	the element’s name is listed in
$verbatim-numbered-elements, or

	a
db processing instruction with a
verbatim-numbered pseudo-attribute that
is true is specified.

There are two overriding conditions that will force the value to
be false: first, if the linenumbering attribute is specified and has the
value unnumbered, the listing will not be numbered.
Second if the listing has a
db processing instruction with a
verbatim-style pseudo attribute that specifies the “plain” style. Listings
in the plain style cannot be numbered, attempting to do so will generate
a warning message from the stylesheets.

f:verbatim-style
f:verbatim-style — Returns the style of a verbatim listing.

Function:
{http://docbook.org/ns/docbook/functions}verbatim-style#1

Defined in:
modules/verbatim.xsl

Used in:
modules/verbatim.xsl, modules/attributes.xsl

Synopsis
	f:verbatim-style($context as element()) as xs:string

Description

The f:verbatim-style() function returns the style
of presentation that should be used for the
specified verbatim listing.

If a
db processing instruction with a
verbatim-style pseudo-attribute is present,
the value of that pseudo-attribute will be returned.
Otherwise, it will be “lines” if the
element’s name is listed in
$verbatim-line-style,
“plain” if the
element’s name is listed in
$verbatim-plain-style, or “raw”.

f:verbatim-trim-trailing
f:verbatim-trim-trailing — Return true if trailing blank lines should be trimmed.

Function:
{http://docbook.org/ns/docbook/functions}verbatim-trim-trailing#1

Defined in:
modules/verbatim.xsl

Used in:
modules/verbatim.xsl

Synopsis
	f:verbatim-trim-trailing($context as element()) as xs:boolean

Description

This function examines a verbatim environment, the $context,
and returns true if trailing blank lines should be trimmed from it.
A db processing instruction with a
verbatim-trim-trailing pseudo-attribute may be used to override the
$verbatim-trim-trailing-blank-lines parameter on a
case-by-case basis.

f:xlink-style
f:xlink-style — Returns the XLink style for this document.

Function:
{http://docbook.org/ns/docbook/functions}xlink-style#1

Defined in:
modules/xlink.xsl

Used in:
main.xsl, modules/xlink.xsl

Synopsis
	f:xlink-style($document as document-node()) as xs:string

Description

The stylesheets support XLink extended links. See
$xlink-style for more details.

f:xpointer-idref
f:xpointer-idref — Parses an XPointer for a same-document ID reference.

Function:
{http://docbook.org/ns/docbook/functions}xpointer-idref#1

Defined in:
modules/xlink.xsl

Used in:
modules/xlink.xsl

Synopsis
	f:xpointer-idref($xpointer) as xs:string?

Description

In DocBook, there are generally two ways to refer to other
elements in the current document by ID: using the linkend
(or linkends) attribute or using the xlink:href
attribute.

The f:xpointer-idref() function returns the
ID portion of an XPointer that is a reference to another ID in the
current document.

In other words:

	f:xpointer-idref('#foo') is foo,
	f:xpointer-idref('id(foo)') is foo,
	and f:xpointer-idref('http://example.org/#foo')
is the empty sequence.

IV. Template reference
Table of Contents
	t:audio-fallback
	t:biblioentry
	t:bottom-nav
	t:chunk-cleanup
	t:chunk-footnotes
	t:chunk-output
	t:docbook
	t:generate-index
	t:index-zone-reference
	t:inline
	t:mediaobject-img
	t:person-name
	t:person-name-family-given
	t:person-name-first-last
	t:person-name-last-first
	t:person-name-list
	t:table-footnotes
	t:top-nav
	t:video-fallback
	t:xlink

t:audio-fallback
t:audio-fallback — Generate fallback for audio.

Description

Audio fallback is now supported with $fallback-js.

t:biblioentry
t:biblioentry — Format a biblioentry element.

Template:
{http://docbook.org/ns/docbook/templates}biblioentry

Defined in:
modules/templates.xsl

Used in:
modules/bibliography.xsl

Synopsis
<xsl:template name="t:biblioentry"/>

Description

Unlike bibliomixed, where the author is expected to
provide most of the formatting, biblioentry is a bag of
metadata. On the one hand, this opens up the possibility of producing
different bibliographic styles from the same entry. On the other hand, it
greatly complicates formatting.

The default t:biblioentry template uses a
header template (see Section 5.5, “Templates”).

t:bottom-nav
t:bottom-nav — Generate bottom-of-page navigation links.

Template:
{http://docbook.org/ns/docbook/templates}bottom-nav

Defined in:
modules/chunk-cleanup.xsl

Used in:
modules/chunk-cleanup.xsl

Synopsis
<xsl:template name="t:bottom-nav">
 <xsl:param name="chunk" as="xs:boolean"/>
 <xsl:param name="node" as="element()"/>
 <xsl:param name="prev" as="element()?"/>
 <xsl:param name="next" as="element()?"/>
 <xsl:param name="up" as="element()?"/>
 <xsl:param name="top" as="element()?"/>
 </xsl:template>

Description

This template generates the bottom-of-page nav element. When
chunking is performed, this should provide links between pages.

t:chunk-cleanup
t:chunk-cleanup — Cleanup the HTML markup for a DocBook document.

Template:
{http://docbook.org/ns/docbook/templates}chunk-cleanup

Defined in:
docbook.xsl

Used in:
docbook.xsl

Used by:
t:docbook

Synopsis
<xsl:template name="t:chunk-cleanup">
 <xsl:param name="source" as="document-node()"/>
 <xsl:param name="docbook" as="document-node()"/>
 </xsl:template>

Description

This mode performs cleanup tasks on the HTML document that
results from DocBook processing. This process
moves footnotes and annotations when necessary, generates navigation
elements, etc.

t:chunk-footnotes
t:chunk-footnotes — Processes footnotes in a chunk.

Template:
{http://docbook.org/ns/docbook/templates}chunk-footnotes

Defined in:
modules/chunk-cleanup.xsl

Used in:
modules/chunk-cleanup.xsl

Synopsis
<xsl:template name="t:chunk-footnotes">
 <xsl:param name="footnotes" as="element()*"/>
 </xsl:template>

Description

When chunking is being performed (see Section 2.6, ““Chunked” output”),
all of the footnotes that should appear in a chunk are processed with this template.

t:chunk-output
t:chunk-output — Generate chunked output for a DocBook document.

Template:
{http://docbook.org/ns/docbook/templates}chunk-output

Defined in:
docbook.xsl

Used in:
docbook.xsl

Used by:
t:docbook

Synopsis
<xsl:template name="t:chunk-output">
 <xsl:param name="source" as="document-node()"/>
 <xsl:param name="docbook" as="document-node()"/>
 </xsl:template>

Description

This mode processes the $persistent-toc if
requested and generates individual documents for each chunk. Like the
XPath transform function, this template returns a map.
You must process the map to store the documents.

t:docbook
t:docbook — Process a DocBook document.

Template:
{http://docbook.org/ns/docbook/templates}docbook

Defined in:
docbook.xsl

Used in:
docbook.xsl

Synopsis
<xsl:template name="t:docbook">
 <xsl:param name="return" as="xs:string"/>
 </xsl:template>

Description

This mode processes a DocBook document. It’s usually called
automatically by the root template in the stylesheets. You only need to call
it explicitly if you have an override for the root template and want to
do some specialized processing.

The template has a single parameter, return, which selects
what should be constructed by the template:

	main-document, the default value
	Returns the primary output of the stylesheet.

	raw-results
	Returns a map with two keys, document containing the original
DocBook document processed and output containing the transformed
result.

	chunked-results
	Returns a map with two keys, document containing the original
DocBook document processed and chunks containing a map from
output URIs to documents.

Any other value is an error.

t:generate-index
t:generate-index — Generate a back-of-the-book style index.

Template:
{http://docbook.org/ns/docbook/templates}generate-index

Defined in:
modules/index.xsl

Used in:
modules/index.xsl

Synopsis
<xsl:template name="t:generate-index">
 <xsl:param name="scope"/>
 </xsl:template>

Description

This template is called when an empty index tag is found
the document and automatic index generation is enabled. Automatic index
generation is enabled if
either the $generate-index is true
or a
db processing instruction with an
autoindex pseudo-attribute is true. If the autoindex pseudo-attribute
is explicitly false, automatic index generation is suppressed for the index in which
it appears.

t:index-zone-reference
t:index-zone-reference — Process index zone references.

Template:
{http://docbook.org/ns/docbook/templates}index-zone-reference

Defined in:
modules/index.xsl

Used in:
modules/index.xsl

Used by:
t:index-zone-reference

Synopsis
<xsl:template name="t:index-zone-reference">
 <xsl:param name="scope"/>
 <xsl:param name="role"/>
 <xsl:param name="type"/>
 <xsl:param name="lang"/>
 <xsl:param name="zones" as="xs:string*"/>
 </xsl:template>

Description

This template is called to generate index references for terms that have
a zone attribute. It is only called when generating an index.

t:inline
t:inline — Process an inline element.

Template:
{http://docbook.org/ns/docbook/templates}inline

Defined in:
modules/inlines.xsl

Used in:
modules/bibliography.xsl, modules/glossary.xsl, modules/info.xsl, modules/blocks.xsl, modules/verbatim.xsl, modules/inlines.xsl, modules/links.xsl, modules/publishers.xsl

Synopsis
<xsl:template name="t:inline">
 <xsl:param name="namemap"/>
 <xsl:param name="class" as="xs:string*"/>
 <xsl:param name="local-name-as-class" as="xs:boolean"/>
 <xsl:param name="extra-attributes" as="attribute()*"/>
 <xsl:param name="content"/>
 </xsl:template>

Description

All of the inline elements are processed by t:inline.
This provides a common place to handle the fact that any of them might be a link.
Several parameters exist to handle variations in presentation:

	namemap
	Maps the element to a particular HTML element. Defaults to
span.

	class
	A list of tokens that should be added to the element’s class attribute.

	local-name-as-class
	If this is true, the local name of the DocBook element being processed will
be added to the classes.

	content
	The element content. By default, this is obtained by applying XSLT templates to
the element’s content.

	extra-attributes
	Extra attributes to be added to the element.

t:mediaobject-img
t:mediaobject-img — Generate a mediaobject img.

Template:
{http://docbook.org/ns/docbook/templates}mediaobject-img

Defined in:
modules/objects.xsl

Used in:
modules/objects.xsl

Synopsis
<xsl:template name="t:mediaobject-img">
 <xsl:param name="filename" as="xs:string"/>
 <xsl:param name="styles" as="xs:string*"/>
 <xsl:param name="viewport" as="map(*)?"/>
 <xsl:param name="imageproperties" as="map(*)?"/>
 </xsl:template>

Description

This template is called to generate the
img element for
a media object.

t:person-name
t:person-name — Formats a personal name.

Template:
{http://docbook.org/ns/docbook/templates}person-name

Defined in:
modules/info.xsl

Used in:
modules/info.xsl

Synopsis
<xsl:template name="t:person-name">
 <xsl:param name="style" as="xs:string"/>
 </xsl:template>

Description

This template formats a personal name according to the specified style.
This template must only be called when the current context item is a
personname. The personname element can be used
in two different ways, it can just contain the name:

 |<personname>Norman Walsh</personname>

or it can contain the name with markup:

 |<personname><givenname>Norman</givenname>
 |<surname>Walsh</surname></personname>

How the name is formatted depends on which form of markup is used
and which style is selected. Several styles are supported:

	If the name contains no markup, it is simply formatted as is.

	If the style is “FAMILY-given”, it is formatted
with t:person-name-family-given and generally produces
the family name in upper case followed by the given name. For example: “WALSH Norman”.

	If the style is “last-first”, it is formatted
with t:person-name-last-first and generally produces
the family name followed by the given name separated by a comma.
For example: “Walsh, Norman”.

	If the style is “first-last”, it is formatted
with t:person-name-first-last and generally produces
the given name followed by the family name. For example: “Norman Walsh”.

	Any other value raises dbe:INVALID-NAME-STYLE.

ⓘ
Given names
Historically, DocBook used firstname for the given name of a person.
In DocBook 5.1, the givenname element was introduced as an
alternative. The stylesheets treat them identically.

The stylesheets attempt to determine what style to use for each
personname:

	First, by looking at that the role attribute
on that element. If any of styles from the
$v:personal-name-styles list appear in the role,
that style will be selected. (If more than one style appears, the
results are undefined.)

	If the personname doesn’t identify a style, and if it’s a child of
author, editor, or othercredit, the role
attirbute of its parent is inspected.

	If the $personal-name-style is defined, it is
is selected.

	If a style still hasn’t been selected the style in the
localization file is used.

Personal names are notoriously complicated (see
Names). DocBook includes several tags
for identifying parts of names:

	firstname or givenname
	for a given name,

	surname
	for a family name,

	lineage
	for lineage (such as “Jr” or “III”),

	honorific
	for an honorific title (such as “Dr” or “Ms”), and

	othername
	for everything else.

In all likelihood, if your document contains a variety of personal names,
you will need to use roles to disambiguate special cases and you will have to
provide alternate or additional templates to format them.

t:person-name-family-given
t:person-name-family-given — Formats a personal name in the “FAMILY-given” style.

Template:
{http://docbook.org/ns/docbook/templates}person-name-family-given

Defined in:
modules/info.xsl

Used in:
modules/info.xsl

Used by:
t:person-name

Synopsis
<xsl:template name="t:person-name-family-given"/>

Description

The “FAMILY-given” style formats a personal
name as the family name (surname) in upper-case, followed
by the first given name (if there is one), followed by the text
“[FAMILY given]”. See t:person-name.

Example 1, “The FAMILY-given name style” shows an example of a personal
name to be formatted with the “FAMILY-given” style.

 |<para>The author is
 |<personname role="FAMILY-given">
 | <givenname>Norman</givenname>
 | <surname>Walsh</surname>
 | <othername>David</othername>
 | </personname>.</para>

Example 1. The FAMILY-given name style

That would be formatted as:

The author is
WALSH Norman [FAMILY Given].

t:person-name-first-last
t:person-name-first-last — Formats a personal name in the “first-last” style.

Template:
{http://docbook.org/ns/docbook/templates}person-name-first-last

Defined in:
modules/info.xsl

Used in:
modules/info.xsl

Used by:
t:person-name

Synopsis
<xsl:template name="t:person-name-first-last"/>

Description

The “first-last” style formats a personal name
as: the first honorific, followed by
the given name, followed possibly by the “middle name”, followed by the
surname, followed by the lineage.
See t:person-name.

If an othername is provided and if
$othername-in-middle is true, then the first
othername will be treated as a “middle name” and presented
between the given and family names.

Example 1, “The first-last name style” shows an example of a personal
name to be formatted with the “first-last” style.

 |<para>The author is
 |<personname role="first-last">
 | <givenname>Norman</givenname>
 | <surname>Walsh</surname>
 | <othername>David</othername>
 | </personname>.</para>

Example 1. The first-last name style

That would be formatted as:

The author is
Norman David Walsh.

t:person-name-last-first
t:person-name-last-first — Formats a personal name in the “last-first” style.

Template:
{http://docbook.org/ns/docbook/templates}person-name-last-first

Defined in:
modules/info.xsl

Used in:
modules/info.xsl

Used by:
t:person-name

Synopsis
<xsl:template name="t:person-name-last-first"/>

Description

The “last-first” style formats a personal
name as the family name (surname) followed
by the first given name (if there is one). If both a family name and a given name
are present, they are separated by a comma. See t:person-name.

Example 1, “The last-first name style” shows an example of a personal
name to be formatted with the “last-first” style.

 |<para>The author is
 |<personname role="last-first">
 | <givenname>Norman</givenname>
 | <surname>Walsh</surname>
 | <othername>David</othername>
 | </personname>.</para>

Example 1. The last-first name style

That would be formatted as:

The author is
Walsh, Norman.

t:person-name-list
t:person-name-list — Formats a sequence of personal names.

Template:
{http://docbook.org/ns/docbook/templates}person-name-list

Defined in:
modules/info.xsl

Used in:
modules/bibliography.xsl

Synopsis
<xsl:template name="t:person-name-list"/>

Description

Formats a sequence of names:

	If the sequence consists of a single name, it is formatted.

	If the sequence consists of exactly two names, they are
formatted with “and” between them where “and” is taken from the
in-scope language localization file. It is the item with the key
“author-sep2”.

	If the sequence consists of more than two names, all but the
last are separated by “, “ (the localization item with the key
“author-sep”). The last is separated by “, and”
(the localization item with the key “author-seplast”).

t:table-footnotes
t:table-footnotes — Process table footnotes.

Template:
{http://docbook.org/ns/docbook/templates}table-footnotes

Defined in:
modules/footnotes.xsl

Used in:
modules/tablecals.xsl, modules/tablehtml.xsl

Synopsis
<xsl:template name="t:table-footnotes">
 <xsl:param name="footnotes" as="element(db:footnote)+"/>
 </xsl:template>

Description

The t:table-footnotes template is called
to process footnotes at the bottom of a table.

t:top-nav
t:top-nav — Generate top-of-page navigation links.

Template:
{http://docbook.org/ns/docbook/templates}top-nav

Defined in:
modules/chunk-cleanup.xsl

Used in:
modules/chunk-cleanup.xsl

Synopsis
<xsl:template name="t:top-nav">
 <xsl:param name="chunk" as="xs:boolean"/>
 <xsl:param name="node" as="element()"/>
 <xsl:param name="prev" as="element()?"/>
 <xsl:param name="next" as="element()?"/>
 <xsl:param name="up" as="element()?"/>
 <xsl:param name="top" as="element()?"/>
 </xsl:template>

Description

This template generates the top-of-page nav element. When
chunking is performed, this should provide links between pages.

t:video-fallback
t:video-fallback — Generate fallback for video.

Description

Video fallback is now supported with $fallback-js.

t:xlink
t:xlink — Supports hypertext linking.

Template:
{http://docbook.org/ns/docbook/templates}xlink

Defined in:
modules/xlink.xsl

Used in:
modules/links.xsl

Synopsis
<xsl:template name="t:xlink">
 <xsl:param name="content"/>
 </xsl:template>

Description

In DocBook, most elements can be links. The
t:xlink template is called for each element that might
be participating in a link. This includes both simple links (any inline
element with an xlink:href attribute) and extended links.

V. Mode reference
Table of Contents
	m:annotation-content
	m:ansi
	m:ansi-table
	m:attributes
	m:biblio690
	m:biblioentry
	m:bibliomixed
	m:callout-bug
	m:callout-link
	m:chunk-cleanup
	m:chunk-filename
	m:chunk-output
	m:chunk-title
	m:chunk-write
	m:copyright-years
	m:crossref
	m:crossref-inherit-separator
	m:crossref-label
	m:crossref-label-separator
	m:crossref-number
	m:crossref-number-separator
	m:crossref-prefix
	m:crossref-suffix
	m:crossref-title
	m:details
	m:details-attribute
	m:docbook
	m:footnote-number
	m:footnotes
	m:generate-titlepage
	m:gentext
	m:gentext-list
	m:headline
	m:headline-label
	m:headline-label-separator
	m:headline-number
	m:headline-number-separator
	m:headline-prefix
	m:headline-suffix
	m:headline-title
	m:highlight-options
	m:html-body-script
	m:html-head
	m:html-head-last
	m:html-head-links
	m:html-head-script
	m:htmltable
	m:imagemap
	m:index-div
	m:index-primary
	m:index-secondary
	m:index-see
	m:index-seealso
	m:index-tertiary
	m:kr
	m:kr-args
	m:kr-table
	m:kr-table-args
	m:link
	m:list-of-equations
	m:list-of-examples
	m:list-of-figures
	m:list-of-procedures
	m:list-of-tables
	m:list-of-titles
	m:mediaobject-end
	m:mediaobject-info
	m:mediaobject-output-adjust
	m:mediaobject-start
	m:mediaobject-uris
	m:persistent-toc
	m:production-number
	m:pygments-options
	m:revhistory-list
	m:revhistory-table
	m:seglist-table
	m:segtitle-in-seg
	m:synopfragment-bug
	m:synopsis
	m:title
	m:titlepage
	m:to-uppercase
	m:toc
	m:toc-entry
	m:toc-nested

m:annotation-content
m:annotation-content — Mode for the content of annotations.

Mode:
{http://docbook.org/ns/docbook/modes}annotation-content

Defined in:
modules/annotations.xsl

Description

Annotations, like footnotes, have markers and wrappers that are necessary to support
their presentation. The m:annotation-content mode is used to process the
actual body of the annotation.

m:ansi
m:ansi — Mode for processing funcsynopsis elements in the “ANSI” style.

Mode:
{http://docbook.org/ns/docbook/modes}ansi

Defined in:
modules/programming.xsl (14)

Description

The funcsynopsis element has several possible renderings.
This mode is used when the “ANSI” style of rendering has been selected
and a non-tabular layout is being used.

See also: m:ansi-table, m:kr, m:kr-table,
$funcsynopsis-default-style,
$funcsynopsis-table-threshold, and
$funcsynopsis-trailing-punctuation.

m:ansi-table
m:ansi-table — Mode for processing funcsynopsis elements in the “ANSI” style.

Mode:
{http://docbook.org/ns/docbook/modes}ansi-table

Defined in:
modules/programming.xsl (14)

Description

The funcsynopsis element has several possible renderings.
This mode is used when the “ANSI” style of rendering has been selected
and a table will be used for layout.

See also: m:ansi, m:kr, m:kr-table,
$funcsynopsis-default-style,
$funcsynopsis-table-threshold, and
$funcsynopsis-trailing-punctuation.

m:attributes
m:attributes — Mode for processing attributes.

Mode:
{http://docbook.org/ns/docbook/modes}attributes

Defined in:
modules/attributes.xsl (31)

Description

Each DocBook element in the source document produces a primary HTML element
in the result document. The attributes associated with that primary element are
obtained by processing the DocBook element in the m:attributes mode.

m:biblio690
m:biblio690 — Mode for processing ISO 690 biblioentry bibliographic entries.

Mode:
{http://docbook.org/ns/docbook/modes}biblio690

Defined in:
modules/biblio690.xsl (33)

Since:
2.0.1

Description

DocBook bibliographic entries come in two forms:
raw
and cooked. The biblioentry form is the “raw” form.
When the $bibliography-style parameter is
“iso690”, this mode is used to process
biblioentry elements.

m:biblioentry
m:biblioentry — Mode for processing biblioentry bibliographic entries.

Mode:
{http://docbook.org/ns/docbook/modes}biblioentry

Defined in:
modules/bibliography.xsl (11)

Description

DocBook bibliographic entries come in two forms:
raw
and cooked. The biblioentry form is the “raw” form. The
m:biblioentry mode is used to process these elements.

m:bibliomixed
m:bibliomixed — Mode for processing bibliomixed bibliographic entries.

Mode:
{http://docbook.org/ns/docbook/modes}bibliomixed

Defined in:
modules/bibliography.xsl (7)

Description

DocBook bibliographic entries come in two forms:
raw
and cooked. The bibliomixed form is the “cooked” form. The
m:bibliomixed mode is used to process these elements.

m:callout-bug
m:callout-bug — Mode for producing callout marks.

Mode:
{http://docbook.org/ns/docbook/modes}callout-bug

Defined in:
modules/verbatim.xsl (3)

Description

Callouts are processed in this mode to produce the callout marks
(or “bugs”) used to indicate cross references between the callouts and their
corresponding areas. This mode should only produce the mark, for example
“①”. See m:callout-link.

By default, callouts are numbered sequentially from 1 within each listing.
However, a
db processing instruction placed in the
areaspec can specify a different starting number.
If the starting-callout-number pseudo-attribute is an integer, that’s used as the starting
number. If it has the special value “continues”, then numbering
continues sequentially after the last callout number used in the preceding verbatim listing.

m:callout-link
m:callout-link — Mode for producing callout links.

Mode:
{http://docbook.org/ns/docbook/modes}callout-link

Defined in:
modules/lists.xsl (2)

Description

Callouts in a calloutlist can link back to the corresponding
point in the listing or on the image. This mode is used to produce those links.

m:chunk-cleanup
m:chunk-cleanup — Post-process HTML chunks.

Mode:
{http://docbook.org/ns/docbook/modes}chunk-cleanup

Defined in:
modules/chunk-cleanup.xsl (15)

Description

Every HTML chunk is processed with the
m:chunk-cleanup mode. This mode makes sure that footnotes
and annotations appear in the chunks where their references appear,
adds navigation to the top and bottom of each chunk, etc.
See Section 2.6, ““Chunked” output”.

m:chunk-filename
m:chunk-filename — Selects the chunk filename.

Mode:
{http://docbook.org/ns/docbook/modes}chunk-filename

Defined in:
modules/chunk.xsl (19)

Description

Every element that is identified as a chunk,
see Section 2.6, ““Chunked” output”, will be called in the m:chunk-filename mode
to obtain the filename for that chunk.

m:chunk-output
m:chunk-output — Performs the final-pass of processing on chunks.

Mode:
{http://docbook.org/ns/docbook/modes}chunk-output

Defined in:
modules/chunk-output.xsl (7)

Description

Chunks (see Section 2.6, ““Chunked” output”) are constructed in several
passes. The last pass is in the m:chunk-output mode. This mode makes
last minute adjustments and produces the individual chunk documents.

m:chunk-title
m:chunk-title — Generates the page title for the chunk.

Mode:
{http://docbook.org/ns/docbook/modes}chunk-title

Defined in:
modules/chunk-cleanup.xsl (4)

Description

The page title, the
title in the HTML
head, is generated by processing
the heading in this mode. This mode is responsible for removing markup from the title.

m:chunk-write
m:chunk-write — Create result documents for chunks.

Mode:
{http://docbook.org/ns/docbook/modes}chunk-write

Defined in:
docbook.xsl

Description

When all of the chunk processing is finished, each chunk is
processed in m:chunk-write mode. By default, this mode
creates XSL result documents for each chunk.

m:copyright-years
m:copyright-years — Mode for processing copyright years.

Mode:
{http://docbook.org/ns/docbook/modes}copyright-years

Defined in:
modules/info.xsl

Description

The year elements in a copyright are processed
in this mode. This mode handles the separation (and possible collapsing) of
years.

See also $copyright-year-range-separator
and $copyright-year-separator,
and $copyright-collapse-years.

m:crossref
m:crossref — Produce a cross-reference to the element.

Mode:
{http://docbook.org/ns/docbook/modes}crossref

Defined in:
modules/xref.xsl

Description

The m:crossref mode is used to generate a cross-reference.

m:crossref-inherit-separator
m:crossref-inherit-separator — Produce the inherit separator.

Obsolete as of version 2.0.0.
Description

Separators are now part of the generated text template,
see Chapter 4, Localization.

m:crossref-label
m:crossref-label — Produce the label in a cross-reference.

Mode:
{http://docbook.org/ns/docbook/modes}crossref-label

Defined in:
modules/xref.xsl (9)

Description

The m:crossref-label mode is used to generate the
label in a cross-reference.

m:crossref-label-separator
m:crossref-label-separator — Produce the cross-reference label separator.

Obsolete as of version 2.0.0.
Description

Separators are now part of the generated text template,
see Chapter 4, Localization.

m:crossref-number
m:crossref-number — Produce the number in a cross-reference.

Mode:
{http://docbook.org/ns/docbook/modes}crossref-number

Defined in:
modules/xref.xsl

Description

The m:crossref-number mode is used to generate the
number in a cross-reference.

m:crossref-number-separator
m:crossref-number-separator — Produce the cross-reference number separator.

Mode:
{http://docbook.org/ns/docbook/modes}crossref-number-separator

Defined in:
modules/xref.xsl

Description

The m:crossref-number-separator mode is used to generate the
separator between a number and what follows it in a cross-reference.

m:crossref-prefix
m:crossref-prefix — Produce the cross-reference prefix.

Obsolete as of version 2.0.0.
Description

Prefixes are now part of the generated text template,
see Chapter 4, Localization.

m:crossref-suffix
m:crossref-suffix — Produce the cross-reference suffix.

Mode:
{http://docbook.org/ns/docbook/modes}crossref-suffix

Defined in:
modules/xref.xsl

Description

The m:crossref-suffix mode is used to generate any text
that follows a cross reference.

m:crossref-title
m:crossref-title — Produce the title in a cross-reference.

Mode:
{http://docbook.org/ns/docbook/modes}crossref-title

Defined in:
modules/xref.xsl (6)

Description

The m:crossref-title mode formats the title in a cross-reference.

m:details
m:details — Produce details about a media object.

Mode:
{http://docbook.org/ns/docbook/modes}details

Defined in:
modules/objects.xsl (2)

Description

This mode is used to produce the details about a media object, such as a long
description.

m:details-attribute
m:details-attribute — Produce the short summary for a media object.

Obsolete as of version 2.0.17.
Description

This mode is used to produce a short detail summary about a
media object. This is most often used as the alt text for the
object.

m:docbook
m:docbook — The primary mode for processing DocBook elements.

Mode:
{http://docbook.org/ns/docbook/modes}docbook

Defined in:
main.xsl (2), modules/admonitions.xsl, modules/annotations.xsl (2), modules/attributes.xsl (4), modules/bibliography.xsl (5), modules/blocks.xsl (19), modules/components.xsl, modules/divisions.xsl, modules/footnotes.xsl (3), modules/glossary.xsl (10), modules/index.xsl (14), modules/info.xsl (15), modules/inlines.xsl (103), modules/l10n.xsl, modules/links.xsl (6), modules/lists.xsl (22), modules/msgset.xsl (7), modules/objects.xsl (12), modules/programming.xsl (24), modules/publishers.xsl (3), modules/refentry.xsl (11), modules/sections.xsl (2), modules/tablecals.xsl (8), modules/tablehtml.xsl (4), modules/templates.xsl, modules/titles.xsl, modules/toc.xsl (7), modules/unhandled.xsl (2), modules/verbatim.xsl (11), modules/xlink.xsl (4)

Used by:
t:index-zone-reference, t:xlink, t:person-name

Description

The m:docbook mode is the primary mode for processing
DocBook elements. Critically, this means that if you import the DocBook stylesheets
and wish to override some of the templates, you must make sure
that those templates are defined in the m:docbook mode.

m:footnote-number
m:footnote-number — Mode for generating footnote numbers.

Mode:
{http://docbook.org/ns/docbook/modes}footnote-number

Defined in:
modules/chunk-cleanup.xsl, modules/footnotes.xsl

Description

A footnote processed in m:footnote-number mode
renders the footnote number (or other symbol) associated with that footnote.

m:footnotes
m:footnotes — Mode for processing footnotes.

Mode:
{http://docbook.org/ns/docbook/modes}footnotes

Defined in:
modules/footnotes.xsl

Description

Perhaps unsurprisingly, footnote elements are processed
in m:footnotes. On the first pass, they’re rendered inline with appropriate
footnote markers. The “chunk cleanup” pass moves them to an appropriate location.

m:generate-titlepage
m:generate-titlepage — Generate a title page.

Mode:
{http://docbook.org/ns/docbook/modes}generate-titlepage

Defined in:
modules/templates.xsl

Description

All “block” elements that have a title (or another
feature that constitutes a title) are processed in the
m:generate-titlepage mode to generate their “title page”.
Don’t be mislead by the term “title page”. For many elements, the title page
consists of nothing more than a single header element.

m:gentext
m:gentext — Generate localization-specific text for an element.

Mode:
{http://docbook.org/ns/docbook/modes}gentext

Defined in:
modules/gentext.xsl (2)

Since:
2.0.0

Description

This mode is used to generate text by applying the appropriate
locale-specific template, see Chapter 4, Localization.
When you apply templates in this mode, there are three parameters you
can pass:

	group (required)
	This identifies the localization group.

	key
	This identifies the localization key. If not provided, the local name
of the context item is used.

	content
	The content of the element. If not provided, the empty sequence is used.

For example, in the context of a book containing several chapters,

1 |<xsl:apply-templates select="db:chapter[1]" mode="m:gentext">
 | <xsl:with-param name="group" select="'title'"/>
 | <xsl:with-param name="content">
 | <xsl:apply-templates select="db:chapter[1]/db:info/db:title/node()"/>
5 | </xsl:with-param>
 |</xsl:apply-templates>

Would generate something like Chapter 1 The Title.

Lists are generated with the m:gentext-list mode.

m:gentext-list
m:gentext-list — Generate localization-specific list for a sequence.

Mode:
{http://docbook.org/ns/docbook/modes}gentext-list

Defined in:
modules/l10n.xsl

Since:
2.0.0

Description

This mode is used to generate a list with local-specific separators,
see Chapter 4, Localization.
When you apply templates in this mode, there are two parameters you
can pass:

	list (required)
	A sequence of one or more items.

	name
	This identifies the localization key. If not provided, the local name
of the context item is used.

For example, in the context of an authorgroup,

1 |<xsl:apply-templates select="." mode="m:gentext-list">
 | <xsl:with-param name="list" as="item()+">
 | <xsl:apply-templates select="*"/>
 | </xsl:with-param>
5 |</xsl:apply-templates>

Would generate different markup depending on the number of authors.
For example, in the English localization, it would generate:

	Author Name
	for a single author

	Author Name and Second Author
	for two authors

	Author Name, Second Author, and Third Author
	for three authors

	Author Name, Second Author, Third Author, and Fourth Author
	for four authors

And so on.

Generated text not associated with lists is generated with the
m:gentext mode.

m:headline
m:headline — Produce a headline title.

Mode:
{http://docbook.org/ns/docbook/modes}headline

Defined in:
modules/titles.xsl

Description

This mode produces the “headline” title for an element. This generally appears in
the text where the element is formatted, but may also occur in the table of contents, the index,
and other places.

m:headline-label
m:headline-label — Produce the label for a headline title.

Mode:
{http://docbook.org/ns/docbook/modes}headline-label

Defined in:
modules/titles.xsl (5)

Description

The m:headline-label mode is used to generate the
label in a headline.

m:headline-label-separator
m:headline-label-separator — Produce the headline label separator.

Obsolete as of version 2.0.0.
Description

Separators are now part of the generated text template,
see Chapter 4, Localization.

m:headline-number
m:headline-number — Produce the headline number.

Mode:
{http://docbook.org/ns/docbook/modes}headline-number

Defined in:
modules/titles.xsl (10)

Description

The m:headline-number mode is used to generate
the number
in a headline.

m:headline-number-separator
m:headline-number-separator — Produce the headline number separator.

Obsolete as of version 2.0.0.
Description

Separators are now part of the generated text template,
see Chapter 4, Localization.

m:headline-prefix
m:headline-prefix — Generate the headline prefix.

Obsolete as of version 2.0.0.
Description

Prefix text is now part of the generated text template,
see Chapter 4, Localization.

m:headline-suffix
m:headline-suffix — Produce the headline suffix.

Obsolete as of version 2.0.0.
Description

Suffix text is now part of the generated text template,
see Chapter 4, Localization.

m:headline-title
m:headline-title — Produce the headline title.

Mode:
{http://docbook.org/ns/docbook/modes}headline-title

Defined in:
modules/titles.xsl (6)

Description

The m:headline-title mode is used to format the
title element
in a headline.

m:highlight-options
m:highlight-options — Determine the syntax highlighting options for an element.

Mode:
{http://docbook.org/ns/docbook/modes}highlight-options

Defined in:
modules/verbatim.xsl

Description

A verbatim element that will be syntax highlighted is processed in this mode
to determine the options for the syntax highlighter. The template must return a map.
The default template returns the language attribute if one is present.

m:html-body-script
m:html-body-script — Add script elements to the end of a document.

Mode:
{http://docbook.org/ns/docbook/modes}html-body-script

Defined in:
modules/head.xsl

Deprecated since:
2.1.0

Deprecated

The technique described here is no longer necessary. Modern
browsers accept a defer attribute on the
script tag to
explicitly specify when scripts are to execute.

Description

One way to assure that JavaScript will only be invoked by the user agent
after the DOM tree has been constructed is to put the script elements for that
code at the end of the file.

The root element of each result document is formatted once in
the m:html-body-script mode. Any elements constructed in
this mode will be added to the end of the HTML
body.
The built-in implementation does nothing; this mode exists as an extensibility
point. See also m:html-head-script.

m:html-head
m:html-head — Construct the HTML
head element.

Mode:
{http://docbook.org/ns/docbook/modes}html-head

Defined in:
modules/head.xsl (5)

Description

The m:html-head mode is used to produce the
head element.
This should include all of the metadata, links, scripts, etc.
necessary to render the document correctly.

It is not supposed to be necessary to override this template.
You can customize what is produced with the
m:html-head-script, m:html-head-links,
and m:html-head-last modes.

The order of elements produced in the
head is:

	Elements generated by the stylesheets automatically
(title, scripts,
links, and other elements).

	Elements generated in m:html-head-script mode.

	Elements generated in m:html-head-links mode.

	Elements in the HTML namespace that are in the source document’s info.

	Elements generated in m:html-head-last mode.

In addition, elements generated in m:html-body-script
occur near the end of the HTML
body element.

m:html-head-last
m:html-head-last — Add elements to the end of the head of a document.

Mode:
{http://docbook.org/ns/docbook/modes}html-head-last

Defined in:
modules/head.xsl

Description

Any elements constructed in m:html-head-last mode
will be added to the very end of the HTML
head element.
The built-in implementation does nothing; this mode exists as an extensibility
point.

m:html-head-links
m:html-head-links — Add link elements to the head of a document.

Mode:
{http://docbook.org/ns/docbook/modes}html-head-links

Defined in:
modules/head.xsl

Description

Any elements constructed in m:html-head-links mode
will be added to the HTML
head element.
The built-in implementation does nothing; this mode exists as an extensibility
point.

m:html-head-script
m:html-head-script — Add link elements to the head of a document.

Mode:
{http://docbook.org/ns/docbook/modes}html-head-script

Defined in:
modules/head.xsl

Description

Any elements constructed in m:html-head-script mode
will be added to the HTML
head element.
The built-in implementation does nothing; this mode exists as an extensibility
point.

m:htmltable
m:htmltable — Mode for processing HTML table elements.

Mode:
{http://docbook.org/ns/docbook/modes}htmltable

Defined in:
modules/tablehtml.xsl (2)

Description

Where DocBook uses the HTML table model, it copies the definitions
of the table elements (and the attributes on those elements) from HTML.
The m:htmltable mode simply copies those elements and attributes
to the result. When processing the contents of table cells, processing switches
back to m:docbook mode.

m:imagemap
m:imagemap — Construct an HTML imagemap.

Mode:
{http://docbook.org/ns/docbook/modes}imagemap

Defined in:
modules/objects.xsl

Description

The imageobjectco element is processed in this mode to construct
an HTML image
map.

m:index-div
m:index-div — Mode for generating divisions in an index.

Mode:
{http://docbook.org/ns/docbook/modes}index-div

Defined in:
modules/index.xsl

Description

Index processing, that is, the process of
generating an index, involves collecting all of
the indexterms together, collating them, and rendering
them.

The terms are grouped alphabetically and each group is processed
in the m:index-div mode.

m:index-primary
m:index-primary — Mode for generating primary index entries.

Mode:
{http://docbook.org/ns/docbook/modes}index-primary

Defined in:
modules/index.xsl

Description

When generating an index, each distinct indexterm is
processed in m:index-primary mode to output its primary
entry.

m:index-secondary
m:index-secondary — Mode for generating secondary index entries.

Mode:
{http://docbook.org/ns/docbook/modes}index-secondary

Defined in:
modules/index.xsl

Description

When generating an index, each distinct secondary indexterm is
processed in m:index-secondary mode to output its secondary
entry.

m:index-see
m:index-see — Mode for generating index “see” entries.

Mode:
{http://docbook.org/ns/docbook/modes}index-see

Defined in:
modules/index.xsl

Description

When generating an index, each indexterm that defines a
“see” index cross-reference is
processed in m:index-see mode to output the cross-reference.

m:index-seealso
m:index-seealso — Mode for generating index “see also” entries.

Mode:
{http://docbook.org/ns/docbook/modes}index-seealso

Defined in:
modules/index.xsl

Description

When generating an index, each indexterm that defines a
“see also” index cross-reference is
processed in m:index-seealso mode to output the cross-reference.

m:index-tertiary
m:index-tertiary — Mode for generating index tertiary entries.

Mode:
{http://docbook.org/ns/docbook/modes}index-tertiary

Defined in:
modules/index.xsl

Description

When generating an index, each distinct tertiary indexterm is
processed in m:index-tertiary mode to output its tertiary
entry.

m:kr
m:kr — Mode for processing funcsynopsis elements in the “K&R” style.

Mode:
{http://docbook.org/ns/docbook/modes}kr

Defined in:
modules/programming.xsl (14)

Description

The funcsynopsis element has several possible renderings.
This mode is used when the “K&R” style of rendering has been selected
and a non-tabular layout is being used.

See also: m:kr-table, m:ansi, m:ansi-table,
$funcsynopsis-default-style,
$funcsynopsis-table-threshold, and
$funcsynopsis-trailing-punctuation.

m:kr-args
m:kr-args — Mode for processing function arguments.

Mode:
{http://docbook.org/ns/docbook/modes}kr-args

Defined in:
modules/programming.xsl (7)

Description

This mode is used to process the parameters of a funcsynopsis
in th K&R style. See $funcsynopsis-default-style.

m:kr-table
m:kr-table — Mode for processing funcsynopsis elements in the “K&R” style.

Mode:
{http://docbook.org/ns/docbook/modes}kr-table

Defined in:
modules/programming.xsl (14)

Description

The funcsynopsis element has several possible renderings.
This mode is used when the “K&R” style of rendering has been selected
and a table will be used for layout.

See also: m:kr, m:ansi, m:ansi-table,
$funcsynopsis-default-style,
$funcsynopsis-table-threshold, and
$funcsynopsis-trailing-punctuation.

m:kr-table-args
m:kr-table-args — Mode for processing function arguments in a table.

Mode:
{http://docbook.org/ns/docbook/modes}kr-table-args

Defined in:
modules/programming.xsl (7)

Description

When the tabular presentation of a “K&R”
funcsynopsis is being generated, this mode is used to process
the function arguments.

m:link
m:link — Process inline links.

Mode:
{http://docbook.org/ns/docbook/modes}link

Defined in:
modules/links.xsl (2)

Description

DocBook allows xlink:href to appear on most elements.
All inline elements are processed in m:link mode to add
a link around them if they specify an xlink:href.

m:list-of-equations
m:list-of-equations — Mode for generating a list of equations.

Mode:
{http://docbook.org/ns/docbook/modes}list-of-equations

Defined in:
modules/toc.xsl (2)

Description

If $lists-of-equations is true, then a
list of equations will be generated. This mode is used to process the
equation elements (if any) to
produce that list.

m:list-of-examples
m:list-of-examples — Mode for generating a list of examples.

Mode:
{http://docbook.org/ns/docbook/modes}list-of-examples

Defined in:
modules/toc.xsl (2)

Description

If $lists-of-examples is true, then a
list of examples will be generated. This mode is used to process the
example elements (if any) to
produce that list.

m:list-of-figures
m:list-of-figures — Mode for generating a list of figures.

Mode:
{http://docbook.org/ns/docbook/modes}list-of-figures

Defined in:
modules/toc.xsl (2)

Description

If $lists-of-figures is true, then a
list of figures will be generated. This mode is used to process the
figure elements (if any) to
produce that list.

m:list-of-procedures
m:list-of-procedures — Mode for generating a list of procedures.

Mode:
{http://docbook.org/ns/docbook/modes}list-of-procedures

Defined in:
modules/toc.xsl (2)

Description

If $lists-of-procedures is true, then a
list of procedures will be generated. This mode is used to process the
procedure elements (if any) to
produce that list.

m:list-of-tables
m:list-of-tables — Mode for generating a list of tables.

Mode:
{http://docbook.org/ns/docbook/modes}list-of-tables

Defined in:
modules/toc.xsl (2)

Description

If $lists-of-tables is true, then a
list of tables will be generated. This mode is used to process the
table elements (if any) to
produce that list.

m:list-of-titles
m:list-of-titles — Mode for generating a list-of-titles.

Mode:
{http://docbook.org/ns/docbook/modes}list-of-titles

Defined in:
modules/toc.xsl

Since:
2.0.0

Description

When a list of titles (figures, tables, equations, etc.) is created, each
element is processed in this mode to produce the list item that will appear in the
list.

m:mediaobject-end
m:mediaobject-end — Process the end of media objects.

Mode:
{http://docbook.org/ns/docbook/modes}mediaobject-end

Defined in:
modules/objects.xsl (3)

Description

Media objects (both the mediaobject and inlinemediaobject
containers as well as the imageobjects etc. inside them) are processed
in this mode after the primary content has been rendered.

For mediaobject, this mode is responsible for outputting the
caption, but may also be used to output accessibility details, legal notices, etc.
See also m:mediaobject-start.

m:mediaobject-info
m:mediaobject-info — Compute properties for a media object.

Mode:
{http://docbook.org/ns/docbook/modes}mediaobject-info

Defined in:
modules/objects.xsl (4)

Description

The media object elements are processed in this mode to extract
their properties (input and output URIs, content types, etc.).
See Section 5.4, “Processing mediaobjects”.

m:mediaobject-output-adjust
m:mediaobject-output-adjust — Adjust the URI references to media objects.

Mode:
{http://docbook.org/ns/docbook/modes}mediaobject-output-adjust

Defined in:
modules/chunk-cleanup.xsl

Description

Once the stylesheets have used the
$mediaobject-input-base-uri,
$mediaobject-output-base-uri,
and $mediaobject-output-paths to compute
the URI of a media reference, the reference is processed in
m:mediaobject-output-adjust mode. This is the stylesheet’s
opportunity to make any final adjustments.

The context item for the template will be the
attribute that contains the author’s original value. The
adjusted value is passed in as the $adjusted-uri parameter.
The value returned by the template is used in the HTML.

Here is an example that groups images, audio, and video files
in their own directories:

 1 |<xsl:template match="@*" mode="m:mediaobject-output-adjust">
 | <xsl:param name="adjusted-uri" as="xs:string"/>
 |
 | <xsl:choose>
 5 | <xsl:when test="exists(f:uri-scheme(.))">
 | <!-- Don't mess with absolute URIs... -->
 | <xsl:sequence select="$adjusted-uri"/>
 | </xsl:when>
 | <xsl:otherwise>
10 | <xsl:variable name="type" as="xs:string">
 | <xsl:choose>
 | <xsl:when test="../self::h:img">image</xsl:when>
 | <xsl:when test="ancestor::h:video">video</xsl:when>
 | <xsl:when test="ancestor::h:audio">audio</xsl:when>
15 | <xsl:otherwise>
 | <xsl:sequence select="'media-cleanup-err'"/>
 | </xsl:otherwise>
 | </xsl:choose>
 | </xsl:variable>
20 |
 | <xsl:variable name="parts" select="tokenize($adjusted-uri, '/')"/>
 | <xsl:sequence select="string-join($parts[position() lt last()], '/')
 | || (if (count($parts) gt 1) then '/' else '')
 | || $type || '/'
25 | || $parts[position() eq last()]"/>
 | </xsl:otherwise>
 | </xsl:choose>
 |</xsl:template>

In other words, if the adjusted URI for an image is
path/to/somewhere.png, this template will
return path/to/image/somewhere.png and make
similar adjustments to the audio and video paths.

m:mediaobject-start
m:mediaobject-start — Process the start of media objects.

Mode:
{http://docbook.org/ns/docbook/modes}mediaobject-start

Defined in:
modules/objects.xsl (4)

Description

Media objects (both the mediaobject and inlinemediaobject
containers as well as the imageobjects etc. inside them) are processed
in this mode immediately after the start tag. Templates in this mode can output
attributes, such as summary or alt, as well as additional
accessibility elements; it may also be used to output legal notices, etc. that should
precede the primary content.

If the $mediaobject-accessibility parameter includes
a11y-metadata then any short accessibility summary will be output
in a meta element with the
property value a11y:accessibilitySummary. In addition, any meta
elements in the info will be processed in this mode as well (so they can also
be output using accessibility meta properties.
See also m:mediaobject-end.

m:mediaobject-uris
m:mediaobject-uris — Compute URIs for media objects.

Mode:
{http://docbook.org/ns/docbook/modes}mediaobject-uris

Defined in:
modules/objects.xsl

Description

The media object elements are processed in this mode to extract
their input and output URIs.

m:persistent-toc
m:persistent-toc — Mode for generating the persistent table of contents.

Mode:
{http://docbook.org/ns/docbook/modes}persistent-toc

Defined in:
modules/toc.xsl (3)

Since:
2.0.0

Description

If $persistent-toc is true,
the document will be processed in this mode to produce the contents of the
persistent ToC. By default, this produces the same ToC as the
m:toc mode.

m:production-number
m:production-number — Mode for production numbers.

Mode:
{http://docbook.org/ns/docbook/modes}production-number

Defined in:
modules/programming.xsl

Description

When a productionset is being formatted, the
m:production-number mode is used to produce the prodution numbers.

m:pygments-options
m:pygments-options — Calculate the Pygments options for an element.

Mode:
{http://docbook.org/ns/docbook/modes}pygments-options

Defined in:
modules/verbatim.xsl

Description

When the Pygments syntax highlighter is being used, every
element that will be highlighted is processed in this mode to generate
options for the Pygments process.

m:revhistory-list
m:revhistory-list — Mode to generate a “list” presentation of revhistory.

Mode:
{http://docbook.org/ns/docbook/modes}revhistory-list

Defined in:
modules/blocks.xsl

Description

The revhistory element can be rendered as a list or a table
(see $revhistory-style). The m:revhistory-list mode is used
to render it as a list.

m:revhistory-table
m:revhistory-table — Mode to generate a “table” presentation of revhistory.

Mode:
{http://docbook.org/ns/docbook/modes}revhistory-table

Defined in:
modules/blocks.xsl

Description

The revhistory element can be rendered as a list or a table
(see $revhistory-style). The m:revhistory-table mode is used
to render it as a list.

m:seglist-table
m:seglist-table — Process a segmentedlist as a table.

Mode:
{http://docbook.org/ns/docbook/modes}seglist-table

Defined in:
modules/lists.xsl (4)

Description

Segmented lists can be presented in either a list format or a table format.
If the tabular format is selected, the segmentedlist is processed in this
mode to generate the table.

m:segtitle-in-seg
m:segtitle-in-seg — Mode for processing segment titles in a segment.

Mode:
{http://docbook.org/ns/docbook/modes}segtitle-in-seg

Defined in:
modules/lists.xsl

Description

In a segmentedlist, each segtitle is
processed once for each segment. This processing occurs in the
m:segtitle-in-seg mode.

m:synopfragment-bug
m:synopfragment-bug — Mode for generating the mark for a synopfragementref.

Mode:
{http://docbook.org/ns/docbook/modes}synopfragment-bug

Defined in:
modules/programming.xsl

Description

The synopfragment element allows a synopsis (for example
a cmdsynopsis) to move common fragments out-of-line. The location
where these fragments occur in the primary synopsis is indicated with
a synopfragmentref. The stylesheets will generate a mark, analogous
to the marks used for footnotes or callouts, to connect the reference to the fragment.
The fragment will be processed in m:synopfragment-bug to produce
that mark.

m:synopsis
m:synopsis — Mode for processing programming language synopses.

Mode:
{http://docbook.org/ns/docbook/modes}synopsis

Defined in:
modules/programming.xsl (10)

Description

The elements of class, method, and field synopses are processed in this mode.

m:title
m:title — Format a title.

Mode:
{http://docbook.org/ns/docbook/modes}title

Defined in:
modules/titles.xsl

Description

This mode is used to format titles when they appear in headlines
or cross references.

m:titlepage
m:titlepage — Format elements for the title page.

Mode:
{http://docbook.org/ns/docbook/modes}titlepage

Defined in:
modules/titlepage.xsl (9)

Description

Elements that appear on the title page are processed in this mode to
produce the text that will appear on the title page.

m:to-uppercase
m:to-uppercase — Produce content in upper-case.

Mode:
{http://docbook.org/ns/docbook/modes}to-uppercase

Defined in:
modules/info.xsl (4)

Description

When formatting personal names in a style that requires
converting a name to upper case
(see t:person-name), this mode is used to generate
the upper-case name.

m:toc
m:toc — Mode for generating lists of titles (e.g, the table of contents)

Mode:
{http://docbook.org/ns/docbook/modes}toc

Defined in:
modules/blocks.xsl (4), modules/toc.xsl (2)

Description

Elements are processed in m:toc when automatically
constructing a Table of Contents (or, more generally, any list of titles).

Where a generated list of titles appears is controlled by several parameters.
For manual control, place an empty
toc element where you would like it to appear. If the
toc element is not valid where you would like the list to appear, use
the db-toc processing instruction instead. These must appear as
the direct children of the element for which the list is being constructed.

See also
$generate-toc,
$generate-nested-toc,
$annotate-toc,
$lists-of-figures,
$lists-of-tables,
$lists-of-examples,
$lists-of-equations,
$lists-of-procedures, and
$section-toc-depth.

m:toc-entry
m:toc-entry — Format content for a list-of-titles.

Mode:
{http://docbook.org/ns/docbook/modes}toc-entry

Defined in:
modules/toc.xsl (6)

Description

When an element appears in the Table of Contents (or other list of titles),
it is formatted in this mode to produce the entry in the list.

m:toc-nested
m:toc-nested — What elements are “nested” in a Table of Contents.

Mode:
{http://docbook.org/ns/docbook/modes}toc-nested

Defined in:
modules/toc.xsl (4)

Since:
2.0.0

Description

The elements processed in the m:toc mode determine where
a Table of Contents will appear. When a Table of Contents does appear, the children
of the starting element are processed in the m:toc-nested mode
to determine which of them appear. This mode, for example, handles the maximum nesting
depth of sections in the ToC.

VI. Processing instruction reference
Table of Contents
	DocBook-xslTNG-version
	current-dateTime
	db
	system-property

DocBook-xslTNG-version
DocBook-xslTNG-version — Resolves to the DocBook stylesheet version.

Processing instruction:
DocBook-xslTNG-version

Description

The DocBook-xslTNG-version processing
instruction will be replaced by the version number of the
stylesheets.

For example:

 |<para>This document was formatted with the <citetitle>DocBook
 |xslTNG Stylesheets</citetitle>
 |version <?DocBook-xslTNG-version?>.</para>

Will render like this:

This document was formatted with the DocBook
xslTNG Stylesheets
version 2.1.0.

current-dateTime
current-dateTime — Resolves to a formatted date/time string.

Processing instruction:
current-dateTime

Description

The current-dateTime processing
instruction will be replaced by a formatted date and time. The date
and time is controlled by three pseudo-attributes:

	dateTime
	The ISO 8601 date or date/time to format.
If not specified, defaults to the current date/time. If a date (and
not a date/time) is specified, a default time of noon is assumed.

	offset
	An ISO 8601 day/time duration or
year/month duration. This value will be added to the dateTime that is
to be formatted.

	format
	The format string to use. If not specified, the
$date-dateTime-format is used.

For example:

 |<para>Published on
 |<?current-dateTime format="[F]"?>.</para>

Will render like this:

Published on
Friday.

db
db — Provides additional control over rendering.

Processing instruction:
db

Description

The db processing
instruction provides additional control over the rendering of a number
of elements. It doesn’t produce any output directly.

See also:
	$align-char-default, $align-char-pad, $align-char-width
	$bibliography-style
	$mediaobject-video-element
	$oxy-markup
	$revhistory-style
	$segmentedlist-style
	$xlink-style
	f:chunk-filename
	f:date-format
	f:pi
	f:pi-attributes
	f:verbatim-highlight
	f:verbatim-numbered
	f:verbatim-style
	f:verbatim-trim-trailing
	t:generate-index
	m:callout-bug

system-property
system-property — Resolves to an XSLT system property.

Processing instruction:
system-property

Description

The system-property processing
instruction will be replaced by the corresponding system
property.

For example:

 |<para>This document was formatted with
 |<?system-property xsl:product-name?>
 |version <?system-property xsl:product-version?> on
 |<?current-dateTime format="[D01] [MNn,*-3] [Y0001]"?>.
 |</para>

Will render like this:

This document was formatted with
SAXON
version HE 11.5 on
07 Apr 2023.

Appendix B. GNU Free Documentation License
 GNU Free Documentation License
 Version 1.1, March 2000

 Copyright (C) 2000 Free Software Foundation, Inc.
 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
written document "free" in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a
notice placed by the copyright holder saying it can be distributed
under the terms of this License. The "Document", below, refers to any
such manual or work. Any member of the public is a licensee, and is
addressed as "you".

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall subject
(or to related matters) and contains nothing that could fall directly
within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage
subsequent modification by readers is not Transparent. A copy that is
not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML designed for human modification. Opaque formats include
PostScript, PDF, proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100,
and the Document's license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the
general network-using public has access to download anonymously at no
charge using public-standard network protocols. If you use the latter
option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to
the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
 from that of the Document, and from those of previous versions
 (which should, if there were any, be listed in the History section
 of the Document). You may use the same title as a previous version
 if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities
 responsible for authorship of the modifications in the Modified
 Version, together with at least five of the principal authors of the
 Document (all of its principal authors, if it has less than five).
C. State on the Title page the name of the publisher of the
 Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications
 adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice
 giving the public permission to use the Modified Version under the
 terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections
 and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section entitled "History", and its title, and add to
 it an item stating at least the title, year, new authors, and
 publisher of the Modified Version as given on the Title Page. If
 there is no section entitled "History" in the Document, create one
 stating the title, year, authors, and publisher of the Document as
 given on its Title Page, then add an item describing the Modified
 Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for
 public access to a Transparent copy of the Document, and likewise
 the network locations given in the Document for previous versions
 it was based on. These may be placed in the "History" section.
 You may omit a network location for a work that was published at
 least four years before the Document itself, or if the original
 publisher of the version it refers to gives permission.
K. In any section entitled "Acknowledgements" or "Dedications",
 preserve the section's title, and preserve in the section all the
 substance and tone of each of the contributor acknowledgements
 and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document,
 unaltered in their text and in their titles. Section numbers
 or the equivalent are not considered part of the section titles.
M. Delete any section entitled "Endorsements". Such a section
 may not be included in the Modified Version.
N. Do not retitle any existing section as "Endorsements"
 or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History"
in the various original documents, forming one section entitled
"History"; likewise combine any sections entitled "Acknowledgements",
and any sections entitled "Dedications". You must delete all sections
entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, does not as a whole count as a Modified Version
of the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an "aggregate", and this
License does not apply to the other self-contained works thus compiled
with the Document, on account of their being thus compiled, if they
are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one quarter
of the entire aggregate, the Document's Cover Texts may be placed on
covers that surround only the Document within the aggregate.
Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License provided that you also include the
original English version of this License. In case of a disagreement
between the translation and the original English version of this
License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such
parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

 Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.1
 or any later version published by the Free Software Foundation;
 with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections"
instead of saying which ones are invariant. If you have no
Front-Cover Texts, write "no Front-Cover Texts" instead of
"Front-Cover Texts being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.

Copyright
DocBook xslTNG
Copyright © 2020–2023 Norman Walsh.
All Rights Reserved.

Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License,
Version 1.1 or any later version published by the Free Software
Foundation.
A copy of the license is included in Appendix B, GNU Free Documentation License.
Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those
designations appear in this book and the authors were aware
of a trademark claim, the designations have been printed in caps or
initial caps.
While every precaution has been taken in the preparation of this
book, the publisher and author assume no responsibility for errors or
omissions, or for damages resulting from the use of the information
contained herein.

OPS/media/ptoc-1.png
Aer> DocBook xsITNG Reference 777/

Chantar 1 Oh\warv/iownw

OPS/media/xsltng-icon.png
I/

OPS/media/ptoc-2.png
aAer> DocBook xsITNG Reference Table of Contents [E3]

-

1. Overview
1.1. What do the stylesheets do?
C h a t e r‘ 1 Ove rvi eW 1.2. Getting the stylesheets
p * 2. Using the stylesheets
Before we get started, let’s look at what the stylesheets do and wher R
2.2. Using the Python script
2.3. Run with Java

1.1. What do the stylesheets do? 24 Runwith Docler

2.5. Extension functions
The DocBook xsITNG stylesheets transform DocBook V5.x into HTMJ 2.6. “Chunked” output

they support all of DocBook V5.2, including the DocBook Publishers

suite report gives a precise summary of the current state of coverag

2.7. Effectivity attributes and

profiling

process DocBook V4.x documents by first converting them (tranforn 2.8, Syntax highlighting

that have changed, adding the namespace, etc.) into 5.x documents. 2.9, Print output (dead tree editions)

Some parts of DocBook, especially the modeling parts, are very oper AR

PR Customizing the stylesheets
principle, write a function synopsis for any programming language.

: 3.1. Changing stylesh
naturally going to support only a subset of languages out of the box. SO e

N . g s 3.2. Creating a customization layer
been made to make customizations easy where it’s anticipated that { Y %

3.3. Managing CSS stylesheets
necessary.

3.4. Creating something completely

The stylesheets can also be used to produced paged media such as P different

OPS/media/cover.png
Py)/
DocBook

xsITNG
Reference

OPS/media/xsltng-inverted.png

OPS/css/draft-right.png

OPS/media/amaryllis.jpg

OPS/css/draft-left.png

OPS/media/English_Length_Units_Graph.png
l
‘ span
dm|
5
[en]
6080 ™.

skein

120

Ramsden’s
chain

[Roman mile|

+
Gunter’s
chain 100 | shackle
1760
10
furlong cable

\ 10

E/J nautical mile

Cra

(|

OPS/media/sample.png
Sample Article

This is a very simple DocBook document. It serves as a kind of “smoke test” to demonstrate that the

stylesheets are working.

OPS/media/l10n-en.png
Localization Example

Table of Contents

Part I. Part the first
1. Chapter the first

A. An appendix

Part I. Part the first
Chapter 1. Chapter the first

This is a tiny sample chapter. See also Appendix A.

Appendix A. An appendix

This is a tiny sample appendix. See also Chapter 1.

OPS/media/l10n-en-ann.png
Localization Example
Table of Contents

Part I. Part the first

A. An appendix

Part I. Part the first

This is a tiny sample chapter. See also Appendix A.

Appendix A. An appendix

This is a tiny sample appendix. See also-

OPS/media/stamp400x256.png
The Source for
Documentation

OPS/media/l10n-fr.png
Exemple de Localisation

Table des matieres

Partie I. Premieére partie

1. Chapitre un

A. Annexe
Partie I. Premiére partie

Chapitre 1. Chapitre un

Ceci est un petit exemple de chapitre. Voir aussi Annexe A.

Annexe A. Annexe

Ceci est un petit exemple d’annexe. Voir aussi Chapitre 1.

OPS/media/l10n-en-alt.png
Localization Example

Contents

Part I. Part the first
1. Chapter the first

A. An appendix

Part I. Part the first
Chapter 1. Chapter the first

This is a tiny sample chapter. See also App. A.

A. An appendix

This is a tiny sample appendix. See also Chapter 1.

